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1. Introduction

The brain, regardless of the organism it belongs to, is a wonderfully complex organ that
functions as an information handling device, allowing the organism to interact with the
physical world around it. It receives sensory input from various parts of the organism's
body, processes this information and returns appropriate responses back to the body. All
of this information transfer � to, from and within the brain � happens through specialized
cells called neurons. Neurons exhibit a large variability in their structure and function,
across species, individuals and even brain regions, and facilitate the complex information
processing capabilities of a brain. Thus, in order to unravel the complexity of the brain,
we must begin by understanding how neurons process information.
Most functional properties of individual neurons are fairly well understood. What

remains to be understood is the emergent behaviour of large ensembles, or networks,
of neurons. It is by virtue of the network activity of neurons that the brain is able
to exhibit higher cognitive function (Bressler, 1995). A major focus of neuroscienti�c
research over the past half a century has been on probing and analysing this network
activity, and although the �eld has seen signi�cant progress, it remains a challenge to
reliably measure the activity of multiple individual neurons simultaneously (Buzsáki,
2004).
There are several approaches through which the activity of neurons can be observed

and analysed. In this thesis, we concern ourselves with the approach of extracellular
electrophysiology, wherein the extracellular electrical activity of neurons is measured at
high temporal precision. Speci�cally, we evaluate the quality of algorithms used for a
crucial pre-processing step in electrophysiolgical data analysis, called spike sorting, with
the help of state-of-the-art tools.
We begin this chapter with a brief introduction to electrophysiology, delving into the

history and state-of-the-art of spike sorting. This is followed by a brief introduction to
electrophysiolgical data. Lastly, we outline the structure of the rest of this thesis.

1.1. Electrophysiological Background

Each neuron, in its resting state, maintains a constant electrical potential di�erence
between its intracellular medium and the extracellular medium (known as the membrane

potential) by means of active ion channels located on its cell membrane (Llinas, 2008).
When the neuron is stimulated, this equilibrium is disturbed. If the disturbance exceeds
a cell-speci�c threshold, the membrane potential at the location of the stimulus rapidly
rises and falls, termed as a depolarisation, which causes adjacent regions of the cell to
depolarise in turn. This depolarisation propagates through the length of the cell, and
is called an action potential. Such depolarisations occur on the scale of millivolts and
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Figure 1.1.: Un�ltered and �ltered signals from a single electrode. The two
panels show the same 30 seconds of recorded data before �ltering (top panel) and af-
ter �ltering (bottom panel) using a second order Butterworth bandpass �lter (250Hz -
5000Hz). The insets contain zoomed versions of the respective signals, clearly showing
the spiking activity in the form of fast and large negative deviations. Filtering makes it
easier to extract neuronal activity with the use of a threshold.

can be measured using probes placed inside or around the cell. This forms a basis for
electrophysiology, wherein the electrical properties and dynamics of neurons are studied
by measuring the voltage �uctuations inside (intracellular) or outside (extracellular) the
cell. Intracellular recording methods are limited by the number of neurons that can
be simultaneously measured. To record from large ensembles of neurons, extracellular
recording methods must be used. In this thesis, we concern ourselves with extracellular
recordings only.
Typically in extracellular electrophysiology, probes are inserted into brain tissue (in

vivo or in vitro) to continuously record the extracellular voltage against a reference
potential. The �uctuations in voltage arise largely due to the collective electrical activity
of neurons in the region around the tip of each probe. The top panel of Figure 1.1
shows an example of such an extracellular signal recorded at a sampling rate of 30,000
samples per second, i.e. 30 kHz. Throughout this thesis, we refer to this time-ordered
sequence of voltage measurements as the recorded signal. The recorded signal shows large
�uctuations across a range of frequencies. However, on �ltering out low (below 250Hz)
and high (above 5000Hz) frequencies from the same signal (bottom panel of Figure 1.1),
one observes many fast, large negative deviations that were not apparent in the recorded
signal. The �ltered form of the recorded signal will hereafter be called the �ltered signal.
A large fraction of these deviations correspond to individual action potentials of neurons
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Figure 1.2.: Zoomed view of un�ltered and �ltered signals on a single elec-

trode. The two panels show the un�ltered (top panel) and �ltered (bottom panel)
signals from the insets of the corresponding panels of �gure 1.1. The extended shape of
each waveform becomes apparent in the insets of this �gure. Additionally, two distinct
waveforms shapes can be seen in the insets.

in the immediate vicinity (<50µm) (Buzsáki, 2004) of the electrode tip, and are called
spikes, owing to their pulse-like appearance. Some of the deviations, though, may not
have neuronal origins and could be artefects of the recording setup.
On zooming further into the �ltered signals shown in the insets of Figure 1.1, we

obtain the signals shown in Figure 1.2. Here, we observe that each spike has an extended
shape (spanning on the order of 1-2 ms), which we call the waveform of the spike.
Each waveform corresponds to a single extracellularly observed action potential of a
single neuron in the vicinity of the probe. This is the neuronal activity we seek in
electrophysiolgical data.

1.1.1. Spike Sorting

The brain has a high density of neurons (for primate motor cortex: 21,500 per mm3; for
human motor cortex: 10,500-30,000 per mm3; human visual cortex: 106,000 per mm3;
(Abeles, 1991)). A probe inserted into the primate motor cortex tissue, for example,
should have on the order of 10 neurons in its immediate vicinity (extending calculations
from Pedreira et al., 2012). In practice, however, we observe discernible waveforms from,
on the order of, 2 to 5 neurons, the reasons for which are not agreed upon (Henze et
al., 2000; Shoham et al., 2006; Pedreira et al., 2012). In addition, the shape of a given
neuron's waveform is characteristic, in that whenever the neuron ��res� (i.e. depolarizes
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Figure 1.3.: Illustrative example of spike sorting using window discriminators.

The left most plot shows a set of unsorted waveforms obtained using a simple threshold
on a �ltered signal (typically seen on an oscilloscope in real time). The green (A) and
red (B) windows are regions de�ned by the data analyst such that all waveforms crossing
either of the two regions are assigned to clusters A and B, respectively. The second and
third plots show the green (A) and red (B) clusters obtained at the end of this exercise.
This simple spike sorting technique is e�ective at quickly separating waveforms with
signi�cantly di�erent shapes, however, it fails when the shapes are very similar.

to emit an action potential), the resulting waveform has a stereotypical shape (Harris et
al., 2000).
In order to analyse the activity of neurons around a probe, it must �rst be extracted

from the �ltered signal. In the nascent days of extracellular electrophysiology, probes
were inserted into brain tissue and waveforms corresponding to events where the recorded
signal crossed a user-set threshold were displayed on an accompanying oscilloscope. When
more than one shape was discernible, methods such as window discriminators were used
to separate the di�erent waveforms shapes into putative groups called units Figure 1.3
(Abeles and Goldstein, 1977; Lewicki, 1998). Each unit putatively corresponds to one
neuron. The term unit is used to re�ect the uncertainty in the identity of the clusters.
Although such methods could be used to extract neuronal activity in �real time� (during
the recording), they are not e�ective at di�erentiating units with similar waveform shapes
and work only when the waveforms are signi�cnatly larger than the background signal.
They also do not scale well with a large number of probes, since the threshold would
have to be manually set for signals from each probe.
Alternatively, instead of distinguishing waveforms corresponding to di�erent neurons,

the average population activity of neurons around the probe can be extracted. This
activity is termed as multiunit activity (MUA), and is shown to be a good predictor of
behaviour (Stark and Abeles, 2007). MUA can either be obtained by calculating the
root-mean-squared (RMS) value of the �ltered signal (Stark and Abeles, 2007), or by
using a threshold to �ag all events which exceed it in the �ltered signal Figure 1.4 (Supèr
and Roelfsema, 2005). In the �rst case, the MUA is a continuous signal representing the
population activity, whereas in the second case, the MUA is a collection of discrete time
stamps where the signal exceeded the threshold. In either case, the MUA provides a
measure of the average activity of the population of neurons around the tip of the probe.

4
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Figure 1.4.: Di�erence between SUA, continuous MUA and discrete MUA.

A snippet of �ltered signal is shown along with the continuous MUA signal overlayed
in red. Black vertical bars at the bottom constitute the discrete MUA and represent
times of threshold crossing. Coloured vertical bars (not black) show di�erent single units
obtained at the end of spike sorting. The inset shows a magni�ed portion of the signal
and the colour bars. Each spike time is �agged at the time of threshold crossing, which
always occurs before the spike minimum, as is seen clearly in the inset.

It is important to understand that MUA does not attempt to identify the individual
neurons which contribute to the population activity, and as a result, cannot be used to
�nd the tuning of individual neurons to behaviour (Supèr and Roelfsema, 2005).
The most commonly used approach to extracting the underlying neuronal activity,

however, involves the extraction and segregation of the activity of multiple single neu-
rons from the �ltered signal. This process is called spike sorting. It has been the standard
procedure for extracting the activity of individual neurons from electrophysiological data
for several decades (Gerstein and Clark, 1964; Abeles and Goldstein, 1977; Schmidt,
1984). It enables the correlation of the activity of individual neurons to behaviour, facil-
itates analyses which require precise spike timing and has proven to be an indispensable
part of any electrophysiological toolkit (Buzsáki, 2004).
Spike sorting can be thought of as a signal processing problem, wherein the aim is to

isolate the constituent components of a complex signal (Carlson and Carin, 2019). The
constituent components for a recorded signal are 1. the neuronal activity (in the form
of a train of waveforms) from neurons in the immediate vicinity of the electrode tip,
and, 2. the background signal composed, in particular, of the activity of neurons further
away from the electrode tip. However, without knowing how many proximal neurons
contribute to the neuronal activity, it is di�cult to demix the complex signal.
Instead, the classical approach to spike sorting involves extracting the largest wave-

forms (corresponding to the nearest neurons) from the recorded signal and grouping them
together based on the similarity of their spike shape. This transforms spike sorting into
a classi�cation and unsupervised clustering problem, wherein each large positive or neg-
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ative deviation in a given recorded signal is classi�ed as a spike or not a spike, and the
classi�ed spikes are then clustered without knowledge of the correct number of clusters
(i.e. units). For the past several decades, this exercise has been typically performed by
human experts with the aid of computational and graphical tools (Lewicki, 1998).
A typical manual spike sorting work�ow involves three steps � �ltering, extraction and

clustering. We discuss each of them brie�y (summarized from Rey et al., 2015).

Filtering Figure 1.1 shows that individual waveforms in the recorded signal become
apparent only after the signal is �ltered. Due to this e�ect, a high-pass or band-pass
�ltering is often the �rst step in spike sorting since it removes frequencies from the
recorded signal which mask the neuronal activity. There is no consensus on the range
of frequencies to �lter out, since this also depends on the sampling rate of the recorded
signal. It is best to use acausal or zero-phase �lters in order to reduce the e�ect of �ltering
on the shape of the extracted waveforms (Lewicki, 1998). The basic idea, however, is to
remove very low and very high frequencies, enabling the isolation of individual waveforms.

Extraction Extraction refers to the process of isolating waveforms from the �ltered
signal. This is typically done by setting a threshold above or below the �ltered signal
and �agging all events which cross this threshold. The time stamp corresponding to
threshold crossing is termed a spike time. The threshold is measured in volts, or in
units of standard deviations (SD) around the mean of the signal. Once events have been
�agged across a signal, pieces of the �ltered signal in a time window (1-3ms) around the
spike time are stored. These are the waveforms we mentioned earlier. The time window
is chosen based on the nature of the �ltered signal. These waveforms are passed on to
the clustering step.

Clustering The �nal step in spike sorting involves segregating these waveforms into
clusters such that all waveforms within one cluster have a similar shape. This is, in
principle, an unsupervised clustering problem since we do not know the correct number
of underlying clusters. Typically, clustering is performed after extracting relevant features
of waveforms which best describe the variability inherent in them. Principal component
analysis (PCA) is the most commonly used method in this regard and has replaced the
conventional approach of selecting intuitive features such as waveform height and peak-
to-peak amplitude (Lewicki, 1998). The clustering itself is done on the extracted features
and may be performed using a range of algorithms, such as template matching or k-means
clustering, each of which involving di�erent levels of manual intervention (Sukiban et al.,
2019). The clusters of waveforms obtained at the end of this step constitute units.
The result at the end of spike sorting includes the spike times and waveforms cor-

responding to each identi�ed unit in the recorded signal. This is, however, a simpli�ed
description of the exercise, only considering the case where recorded signals are measured
from a single electrode.

6



1.1.2. Limitations of Manual Spike Sorting

Over the past few decades, new probes with multiple recording electrodes have been in-
troduced, owing to advances in electrode fabrication technology. These multi-site probes
have varied con�gurations, such as stereotrodes (McNaughton et al., 1983), tetrodes
(Gray et al., 1995) and multielectrode arrays (Gross et al., 1977; Blanche et al., 2005;
Gross, 2011). There are two main advantages of using multiple electrodes to record from
the same population of neurons. First, it becomes possible to record from many more
neurons simultaneously. Second, in the case of densely arranged electrodes, it becomes
easier to separate the activity of di�erent neurons since their activity is independently
measured at di�erent locations and can, thus, be better distinguished.
Certain multi-site probes, such as the Utah Array (Maynard et al., 1997), can be im-

planted chronically into brain tissue, opening up avenues for more advanced experiments
where neuronal activity of awake and behaving animals can be measured (Brochier et al.,
2018). More recently, arrays with up to thousands of recording sites have been developed,
allowing for thousands of neurons to be recorded simultaneously (Tsai et al., 2017).
Classical spike sorting methods, which involve the manual processing of recorded sig-

nals from individual electrodes, quickly become impractical as the number of electrodes
increases. Particularly with data recorded using probes with a dense arrangement of
electrodes, where the activity of single neurons can be detected on multiple electrodes,
manual spike sorting is no longer possible (Einevoll et al., 2012).
Manual spike sorting results are also subject to a large variability when performed by

di�erent human experts, and tend to have large error rates, with up to 23% false positives
and 30% false negatives reported on synthetic data (Wood et al., 2004b). This not only
a�ects the reliability of the spike sorting result, but also makes the entire procedure
non-reproducible. The accuracy of spike sorting has been shown to have a direct e�ect
on the quality of higher order analysis (Brown et al., 2004; Pazienti and Grün, 2006),
underlining the requirement for more accurate alternatives to manual spike sorting.
Lastly, manual spike sorting is time and labour intensive. The manual spike sorting

of a typical 15 minute session recorded on a 96-channel Utah array, performed using
template matching, involves the following steps (obtained via personal communication
from Alexa Riehle):

1. Loading the data (approx. 5 minutes)

2. Choosing �lter settings for all data (< 1 minute)

3. For each electrode:

a) Load recorded signal (approx. 1 minute)

b) High pass �lter signal (< 1 minute)

c) Inspect and set detection threshold to obtain spikes and waveforms (approx.
1 minute; often repeated to obtain clear spike waveforms)

d) Remove artefacts, that is, signals which are extremely large (approx. 1 minute)

7



e) Run automatic k-means clustering to obtain putative clusters (approx. 2
minutes)

f) Select cluster centers to determine waveforms for template matching (< 1
minute)

g) Run template matching (< 1 minute)

h) Curate clusters by splitting or merging existing ones (approx. 2 minutes)

4. Save time stamps and waveforms (approx. 2 minutes)

The total time required to sort a dataset can, thus, take on the order of a few hours. If
the number of recording channels were to increase, the required time for spike sorting
would increase as well. Given the rate at which new data can be recorded, this is not a
viable solution for longer recordings.

1.1.3. Automatization of Spike Sorting

In response to these challenges, several automatic spike sorting algorithms have been
proposed. They employ di�erent techniques, including hierarchical clustering (Fee et
al., 1996), Independent Component Analysis (ICA) (Takahashi et al., 2003a,b), Gaus-
sian mixture model Expectation Maximization (Wood et al., 2004a), superparamagnetic
clustering (Quiroga et al., 2004), template matching (Franke et al., 2015; Yger et al.,
2018), non-parametric Bayesian clustering (Lee et al., 2017; Wood et al., 2006) and non-
parametric density-based clustering (Chung et al., 2017), among many others. Several
review papers summarize the progress in this �eld over time and provide a good overview
of the state-of-the-art of automatic spike sorting (Lewicki, 1998; Rey et al., 2015; Lefebvre
et al., 2016; Carlson and Carin, 2019).
All these algorithms accept parameters which control the outcome of spike sorting.

Such parametisation not only improves the reproducibility of the procedure, it also allows
for better provenance capture and quality control of the analysis work�ow, enabling easier
data sharing and collaboration.

1.1.4. Evaluation of Spike Sorting Algorithms

The automatization of spike sorting does not ensure its accuracy, and each automatic
algorithm must be evaluated on its ability to accurately sort a given dataset. This kind
of an evaluation boils down to determining whether the spike times and cluster (unit)
labels found by a certain algorithm are correct or not, in turn requiring prior knowledge
of all correct spike times and unit labels in a given dataset. In other words, such an
evaluation requires knowledge of the ground truth. Due to the nature of extracellular
electrophysiolgical recordings, this ground truth is typically not available.
In the absence of ground truth, an algorithm can either be evaluated using metrics

which don't require a ground truth, or by comparing its results to the closest approxi-
mation of the ground truth.
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Additionally, the set of parameters of an algorithm which yields accurate results with
one dataset may not yield accurate results with another. It is, thus, important to deter-
mine the set of parameters of an algorithm which yield the optimal spike sorting result
for a given dataset. This is achieved by running the algorithm on that dataset for all pos-
sible parameter sets and evaluating the results from each. This amounts to performing
parameter scans for each algorithm that we wish to evaluate.
While strategies and metrics have been proposed for the evaluation of spike sorting

algorithms in the absence of ground truth (Pouzat et al., 2002; Schmitzer-Torbert et al.,
2005; Neymotin et al., 2011; Barnett et al., 2016), these become impractical when used
in combination with large parameter scans. The evaluation of such algorithms in the
presence of ground truth is straightforward, since it involves the direct comparison of
spike times and unit labels. There is, however, no standard framework to carry out such
evaluations while performing large parameter scans.

1.2. Aim of this Thesis

In this thesis, we evaluate the performance of two spike sorting algorithms � Mountainsort
(Chung et al., 2017) and Spyking Circus (Yger et al., 2018) � by performing parameter
scans using scalable spike sorting pipelines. We compare the results of the algorithms
with two kinds of ground truth � manually spike sorted data and synthetically generated
surrogate data � in an e�ort to determine the extent to which these algorithms can replace
manual spike sorting. We carry out the comparisons using a combination of standard and
derived metrics. We, thus, propose an analysis framework using which any automatic
spike sorting algorithm can be evaluated.

1.3. Data

Throughout this thesis, we use a single dataset � i140703-001 � recorded from the motor
cortex of a macaque monkey while it performs a behavioural task (Brochier et al., 2018).
The data was recorded at a sampling rate of 30KHz using a Utah Array (Blackrock
Microsystems, Salt Lake City, Utah, USA), which contains 96 electrodes on a single 10-
by-10 grid. Each electrode on the array is 1.5mm long and the spacing between two
adjacent electrodes is 400µm. The manual spike sorting of this dataset was performed
by a human expert (A. Riehle) with the help of the Plexon O�ine Sorter (version 3.3.3),
the results of which were taken as ground truth for the evaluation of the automatic spike
sorting results.

1.4. Structure of this Thesis

We begin this thesis with a thorough description of the two selected automatic spike sort-
ing algorithms and the reasons behind choosing them, in Chapter 2. Then, in Chapter 3,
we describe how we generate surrogate datasets as synthetic ground truth. We use this
surrogate data as ground truth when evaluating the selected algorithms. In Chapter 4,
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we focus on the pipelines we developed for our analysis and in Chapter 5, we discuss in
detail the various metrics which we use to compare the algorithms to ground truth. The
results of these comparisons are given in Chapter 6. Chapter 7 and Chapter 8 wrap up
the contents of this thesis and suggest ways in which our work can be continued.
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2. Automatic Spike Sorting

This chapter is dedicated to the spike sorting algorithms that we have chosen to evaluate.
We �rst look at the reasons behind choosing these algorithms, and list other algorithms
which were considered. This is followed by a description of the algorithms themselves,
focusing on the similarities and di�erences between the two approaches. We also list all
the algorithm parameters which we use as a part of our analysis, and try to provide an
intuitive explanation for each. Finally, we brie�y compare the implentations of the two
algorithms.

2.1. Selected Algorithms

The choice of automatic spike sorting algorithms used in this work was based on the
following criteria:

1. The data analysed in this work was recorded using Utah Arrays which have a
spacing of 400µm between neighbouring electrodes. This inter-electrode spacing
prevents the activity of any given neuron to be observed on multiple electrodes,
implying that the signal from each electrode can be spike sorted independently.
Thus, the automatic spike sorting algorithms should be able to sort data from
independent electrodes.

2. The time required by the human expert to sort one of our datasets is on the order
of a few hours per dataset. The automatic spike sorting algorithms should be able
to perform the analysis in comparable or less time.

3. The software implementations of the algorithms should not be restrictively tedious
to setup and run. It should take as input the recorded voltage signals and yield spike
times and cluster labels as output. The algorithm must be well documented, with
a clear description of the parameters used. If the algorithm could be incorporated
into an automated work�ow, it would be an added bene�t.

Several algorithms were available in literature at the time of choosing. The following is
a list of algorithms that were considered:

1. MountainSort (Chung et al., 2017)

2. Spyking Circus (Yger et al., 2018)

3. Klusta (Rossant et al., 2016)

4. WaveClus (Chaure et al., 2018)
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5. Tri des Clous (Garcia and Pouzat, 2016)

MountainSort and Spyking Circus were chosen because they satis�ed all the criteria listed
above. We will now discuss these two algorithms in detail.

2.2. MountainSort

MountainSort1 was created with the goal of developing a completely automatic spike
sorter, requiring little to no human intervention (Chung et al., 2017). The emphasis
is on having as few free parameters as possible, to eliminate any subjectivity involved
in choosing parameters. The algorithm does not make any assumptions regarding the
nature of the noise or the spiking activity, and thus, is agnostic of the brain region from
which the data is recorded. The only assumptions made are: 1. Each cluster of events
representing a neuron has a uni-modal density function, and, 2. Two such clusters can be
separated by a hyperplane around which there is a relatively low density of data points
The algorithm is divided into three phases, each containing multiple steps:

1. Pre-processing

a) Filtering

b) Whitening

2. Sorting

a) Event Detection

b) Feature Extraction

c) Clustering

d) Fitting

3. Post-processing: Curation and Annotation

Each step in the algorithm has been implemented with high-density MEAs in mind and is
thus parallelized for high computational e�ciency. The datasets we analyze do not make
use of this parallelization, so the details of the parallelization are not discussed here.
Additionally, certain steps are only relevant for high-density MEA data and, hence, are
only discussed brie�y.

2.2.1. Filtering + Whitening

A bandpass �lter is used to �lter the input time-series data using a Fast Fourier Trans-
form. The low-pass and high-pass frequencies are user-de�ned. This is followed by a
whitening step to remove spurious correlations between recording channels (electrodes).

1https://github.com/�atironinstitute/mountainsort_examples/blob/master/README.md
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2.2.2. Event Detection

Potential spiking events on each electrode (and its corresponding neighbourhood for high
density electrode arrays) are obtained by subjecting the pre-processed time-series to a
voltage threshold. Any time stamp t0 that meets the following two criteria is �agged as
an event time

|Y (t0)| > µ (2.1)

|Y (t0)| > |Y (t1)| for all |to − t1| ≤ τ (2.2)

where Y (t0) is the voltage at time t0, µ is the detection threshold in units of standard
deviations away from the mean and τ is the minimum allowable interval between two
subsequent events on the same recording channel. These events are detected for each
electrode neighbourhood independently. Chung et al. (2017) claim that the results of the
sorter are independent of the detection threshold, provided it is low enough.

2.2.3. Feature Extraction and Clustering

For each event �agged in the previous step, the corresponding clip from the pre-processed
time-series is extracted. The clip is of size T centered at time t0. The PCA features of
all the extracted clips is then computed and a clustering is performed on these feature
vectors. The clustering method is called ISO-SPLIT and makes use of a statistical test
called ISO-CUT internally. Both these are brie�y described here.

2.2.3.1. ISO-SPLIT

Given the set of n-component feature vectors (n corresponding to the dimensions re-
tained after PCA) as points in an n-dimensional space, the method begins with an
over-clustering of the points and then iteratively redistributes the points or merges the
clusters until convergence is achieved. The decision to redistribute or merge two given
clusters is performed in two steps. First, the points in the two clusters are projected
onto a line of optimal discrimination and second, this projection is tested for unimodal-
ity using the ISO-CUT statistical test (described below). If the projection is deemed
unimodal, the clusters are merged. If not, the ISO-CUT yields an optimal cut point
around which the points are redistributed. This is repeated until all cluster pairs have
been compared once. Then the algorithm is deemed to have converged.

2.2.3.2. ISO-CUT

For a one-dimensional sample of values, this statistical test determines whether the sam-
ple is unimodal or not. If it is not unimodal, it also determines the optimal cut point
for clustering. A maximum-likelihood unimodal �t to the distribution of samples is com-
puted and the two distributions are compared using the Kolmogorov-Smirnov statistic.
If the value of this statistic exceeds a subjective threshold of 1, unimodality is rejected.
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When unimodality is rejected, the method returns the point of minimal density in the
distribution, but calculates it non-parametrically without any density estimates. The au-
thors claim this allows the method to handle cases where the densities of the two clusters
are very di�erent (for example, in the case one rapidly �ring neuron and one sparsely
�ring neuron).
This entire step does not take any parameters, making it robust and reproducible.

The result of this clustering would depend on the initial choice of clusters, but the
authors claim that given a �ne enough parcellation (high over-clustering), the results
are independent of the initial clustering. This clustering is performed independently for
every electrode neighbourhood.

2.2.4. Cluster Consolidation

So far in the algorithm, no attempt was made to handle cases wherein the same units were
detected on multiple electrodes. Often, the approach to solving this problem involves
merging clusters across electrodes, but the authors argue against merging, speci�cally
quoting computational complexity, high chance of errors and non-transitivity of merge
decisions (i.e. clusters A and B to be merged, and clusters B and C to be merged, but
clusters A and C not to be merged). They propose an alternative approach called cluster
consolidation, wherein, amongst all the con�icting clusters, the cluster with the highest
peak in the average signal is retained. This is accomplished in two passes. In the �rst
pass, clusters with peak average amplitudes signi�cantly smaller than the maxiumum
are discarded. In the second pass, the algorithm iterates over all clusters ordered by
the absolute peak average waveform amplitude and looks for duplicates. If a duplicate
is detected, the cluster with the lower absolute peak average waveform amplitude is
rejected. Two clusters must ful�ll the following criteria to be considered duplicates in the
second pass: 1. they must have been detected on di�erent electrodes, 2. they must have a
comparable amplitude (since clusters with very di�erent amplitudes were discarded in the
�rst pass), and, 3. they must have at least 50% coincident events It is important to note
here that for the datasets analyzed in this work, this step is not of importance because
the electrode arrays used for recording have an inter-electrode distance that prohibits
the same neuron from being detected on multiple electrodes, thus doing away with the
need for cluster consolidation.

2.2.5. Fitting

The �nal step in the sorting phase of the algorithm targets individual threshold crossing
events that were found on more than one electrode neighbourhood but were incorrectly
assigned to non-con�icting clusters, and thus survived the consolidation stage. To this
end, for every set of con�icting events, they choose that event which when removed from
the pre-processed time-series, causes the largest reduction in the l2-norm of the time-
series. (Chung et al., 2017) discuss this in more mathematical detail in their work. For
the purposes of this thesis, it su�ces to say that this step removes events that may have
been �agged twice - either on the same electrode, or on di�erent electrodes. They claim
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this step deals with overlapping spikes to a certain extent while still maintaining the
original clustering labels assigned by previous steps.

2.2.6. Cluster Metrics and Curation

Althought not a part of the main sorting phase, this step is intended to re�ne the quality
of the sorting. It essentially replaces the manual curation of sorting results with an
automated implementation. For each cluster obtained in the sorting phase, a set of
metrics are calculated. The user can set parameters which act as threshold criteria on
these metrics, and all clusters that don't meet the criteria are rejected. The metrics are
discussed below.

2.2.6.1. Isolation

The isolation of a cluster is a measure of how well it is separated from other clus-
ters in the same electrode neighbourhood. For two clusters A = {a1, a2, . . . an} and
B = {b1, b2, . . . bp}, where ai and bj represent the ith and jth clips of clusters A and B,
respectively, the k -nearest neighbour overlap between A and B is de�ned as

moverlap(A,B) =
1

N

N∑
j=1

#{x ∈ A ∪B : ρ(nj(x)) = ρ(x)}
#(x ∈ A ∪B)

, (2.3)

where ρ(x) is the membership function such that ρ(a1) = 1 and ρ(b1) = 2, and
n1(x) . . . nk(x) are the k nearest neighbours of x in A ∪ B. N is the number of points
sampled for this calculation, chosen such that N = min(500,min(size(A), size(B))),
where size(X) is the total number of points in cluster X and min(p, q) returns the lower
value of p and q. Once the overlap between A and all other clusters in its neighbourhood
is calculated, the isolation score of A is given by

misolation(A) = 1− MIN
clustersX

[moverlap(A,X)] , (2.4)

where MIN
clustersX

[f(P )] is the minimum of all values returned by any function f(P ) for

all values of P , and X represents the set of all other clusters. In the algorithm, the user
can set a minimum isolation score threshold, so that all units with an isolation score
below this threshold would be rejected.

2.2.6.2. Noise Overlap

As the name suggests, the noise overlap metric measures the overlap of a cluster, say
A = {a1, a2, . . . an}, with noise. The noise is generated arti�cially and is de�ned to be
a cluster Q = {q1, q2, . . . qn} of n clips extracted from the pre-processed time-series at
random time stamps. The clips in both Q and A are adjusted to remove the weighted
average of the expected noise waveform, yielding the adjusted clusters Q̃ and Ã. The
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noise overlap of A is then de�ned as

mnoise(A) = moverlap(Ã, Q̃). (2.5)

A maximum value of the noise overlap score can be set by the user, so that all units with
a noise overlap greater than this threshold would be rejected.

2.2.6.3. Firing Rate

Given a cluster of event waveforms A = {a1, a2, . . . an} obtained from the pre-processed
time-series of one electrode Ye(t) = {t1, t2, . . . , tn}, the �ring rate λ for the cluster is
de�ned as

λ =
size(A)

tn − t1
, (2.6)

where size(A) is the total number of time points in A and n is the number of time points
in the pre-processed time-series. For a real neuron, this quantity can be simply de�ned
as the total number of spiking events per second. The �ring rate threshold parameter
allows the user to choose the minimum �ring rate for the sorted units.

2.2.6.4. Cluster Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) of a cluster of events is de�ned as the peak absolute
amplitude of the average waveform divided by the peak standard deviation (SD). It is a
measure of how much larger the waveform signal is compared to the underlying noise in
the signal. Formally, given a cluster of event waveforms W = [w1, w2, . . . wn] where each
waveform is a vector wi = [ai1, ai2, . . . , aiT ], we obtain the average waveform W̄ as

W̄ =

[
1

n

n∑
i=1

ai1,
1

n

n∑
i=1

ai2, . . . ,
1

n

n∑
i=1

aiT

]
, (2.7)

⇒ W̄ =
[
ā1, ā2, . . . , āT

]
, (2.8)

and the standard deviation vector Wσ as

Wσ =

√√√√ 1

n

n∑
i=1

(ai1 − ā1)2,

√√√√ 1

n

n∑
i=1

(ai2 − ā2)2, . . . ,

√√√√ 1

n

n∑
i=1

(aiT − āT )2

]
, (2.9)

⇒Wσ =
[
aσ1, aσ2, . . . , aσT

]
. (2.10)

The SNR is calculated as

SNR =
max(W̄ )

max(Wσ)
. (2.11)

The peak SNR threshold parameter sets a minimum for the peak SNR value for the units.
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2.2.7. Summary

The MountainSort package is designed to take as few parameters as possible to perform
a completely automatic spike sorting. In this work, we attempt to �nd the parameter
set that would yield the best spike sorting results. To that end, we perform parameter
scans over all available parameters for MountainSort, which are listed here:

1. detect_threshold (µ) - threshold which the pre-processed time-series must cross
to be �agged as an event

2. detect_interval (τ) - minimum allowable time di�erence between two subsequent
events �agged on a certain channel

3. clip_size (T ) - length of the event vectors extracted from the pre-processed time-
series

4. firing_rate_threshold (λ) - threshold for the minimum �ring rate of units

5. isolation_threshold (misolation) - threshold for minimum isolation of units

6. noise_overlap_threshold (moverlap) - threshold for maximum overlap of units
with noise

7. peak_snr_threshold (SNR) - threshold for minimum cluster SNR

In addition to the parameters listed here, there are other essential parameters required
by the algorithm to successfully sort the data. These are: 1. sampling rate - rate of
data collection in Hertz 2. �lter frequencies (low and high) - frequency (in Hertz) used to
band-pass �lter the original time series; we used 250 Hz and 5000 Hz for low and high cut-
o�s throughout this thesis 3. electrode layout - the relative mapping of the electrodes is
required by the algorithm in cases where the electrodes are dense and clusters needs to be
consolidated across electrodes 4. adjacency radius - the radius within which neighbouring
electrodes are expected to record from the same neurons (measured in the same units
as used for the electrode layout) 5. detect sign - a binary (+1 or -1) parameter that
determines whether a positive or a negative threshold will be used to detect threshold
crossing events

2.3. Spyking Circus

Spyking Circus2 is a spike sorting toolbox designed to be able to sort data from large,
high-density multi-electrode arrays (Yger et al., 2018). The algorithm utilizes a clustering
approach to determine centers of clusters corresponding to potential units and then uses
template matching to �nalize the spike sorting. One assumption made is that in a
high-dimensional feature space, cluster centers of units will be points of maximum local
density, although no assumption is made regarding the shape of the clusters. The clusters

2https://github.com/spyking-circus/spyking-circus
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are characterized by templates and the templates are matched with the recorded signal in
an attempt to �decompose� the recorded signal into two components (described in more
detail below), as is given by the equation �

s(t) =
∑
ij

aijwj(t− ti) + bijvj(t− ti) + e(t), (2.12)

where s(t) is the recorded signal on a single electrode at time t, aij and bij are coe�cients
which determine the amplitude of the components wj and vj , respectively, for the signal
at the ith time point and jth template, and e(t) is the background signal, or noise.
The idea is to represent the orignal signal as a linear sum of templates corresponding to
putative individual neurons.
The algorithm consists of four major steps.

1. Pre-processing

a) Filtering

b) Spike detection

c) Whitening

d) Basis estimation

2. Clustering

a) Masking

b) Pre-clustering

c) Clustering by local density search

d) De�ning centroids

e) Merging

f) Template estimation

g) Removal of redundant templates

3. Template matching

4. Automated Merging

The e�ciency and scalability of the algorithm results from a parallelized clustering step
which divides the array into as many local neighbourhoods as there are electrodes and
carries out the clustering on each neighbourhood independently.
Discussing each of these steps in detail here would involve repeating what has already

been described in the original publication (Yger et al., 2018). We go through the promi-
nent steps of the algorithm, without delving into all details.
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2.3.1. Pre-Processing

A third order bandbass �lter is used to �lter the time-series data. Following this, putative
spikes are detected by subjecting the time-series on each electrode k to a threshold θk
de�ned as θk = λ · MAD(sk(t)), where sk(t) is the time-series and MAD(x) is the
Median Absolute Deviation of x. The spike threshold multiplier, λ, is a free parameter.
The spike times thus obtained are used to extract up to a maximum of 20 seconds of
time series data that contains no spikes. This extracted signal is used to compute the
covariance matrix of noise, which in turn is used to whiten the time-series data. The
spike threshold θk is recomputed for the whitened time-series and new spike times are
extracted. The extracellular waveforms (snippets) corresponding to each putative spike
time are extracted and used for the basis estimation.

2.3.2. Basis Estimation

This step is aimed at reducing the dimensionality of a subset of the snippets extracted
earlier. A subset Np of all snippets are �rst upsampled, aligned to their minima and
then downsampled to the original snippet size. Principal Component Analysis (PCA) is
performed on the aligned snippets to reduce their dimensionality to NPCA dimensions.
These principal components are then used for clustering.

Clustering A clustering is performed prior to the template matching step in order to
determine the putative clusters corresponding to di�erent units. It is performed on a
subset of events (Nspikes ≤ 10000 in this thesis) collected randomly from the set of all
threshold crossing events. The snippet corresponding to each selected event is projected
onto the PCA basis estimated in the pre-processing step. Events on each electrode are
clustered in parallel, which speeds up the entire process. In cases where a certain event
is detected on multiple electrodes, it is �agged on the electrode with the lowest minimum
of the corresponding snippet. The clustering itself is carried out in the following steps:

1. In the PCA space of the selected events, for each event xki detected on electrode k,
two measures are calculated:

a) ρki , which is the mean distance of xki to its S nearest neighbours (S = 100 for
all analyses in this thesis)

b) δki , which is the minimum distance of xki to any other point x
k
m,m 6=i, such that

ρkm ≤ ρki

2. Putative cluster centroids are de�ned by taking the Nmax clusters events with the
highest δ/ρ ratio (Nmax clusters is set to 10 for all anayses in this thesis, and corre-
sponds to the maximum expected number of units on any channel). The intuition
here is that cluster centroids would be points of high local density (corresponding
to low values of ρ) which are far apart from each other (leading to a high values of
δ).
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3. The remaining points (which were not classi�ed as putative cluster centroids) are
sorted by increasing ρ values and iteratively assigned to the same cluster as the
nearest point with a lower ρ value.

4. Similar clusters are then merged if the normalized distance between them, ζ is less
than a user-de�ned threshold σsimilar. ζ is de�ned as

ζ(m,n) =
‖αm − αn‖√
γ2
m + γ2

n

, (2.13)

where αm and αn are the medians of the clustersm and n (taken to be the respective
centres). γm (respectively, γn) is the dispersion of the projections of all events of
cluster m (n) on to the axis joining the centroids of m and n (i.e. αm−αn) and is
de�ned as

γ(m) = MAD(xm · (αm − αn)). (2.14)

Additionally, clusters with less than 50 spikes (η · Nspikes, where η = 0.005) were
discarded.

5. For template matching, templates are estimated for all remaining clusters by cal-
culating two components for each cluster � a) wm, the median of all snippets in
the cluster, and b) vm, the direction of the largest variance of the projection of the
snippets in a space orthogonal to wm

6. Template matching is performed on each electrode by iteratively �tting every
threshold crossing event with the templates estimated on that electrode, such that
both components, wm and vm, satisfy certain requirements (see original publica-
tion).

2.3.3. Automated Merging

As an additional optional step, the cross-correllograms of spiketrains from all pairs of
clusters obtained at the end of template matching are computed, and those pairs which
show a high degree of similarity in �ring activity (cross-correllograms and �ring rates)
are merged. Although this step is also parametrized, newer implementations of the tool
provide an optional parameter auto_mode which automatizes this step completely. We
have used this parameter in our analyses.

2.3.4. Summary

Spyking Circus is a tool which provides a lot of control over the spike sorting results.
Speci�cally, each parameter described here (and additional ones described in the original
publication) can be changed easily. Although not clear in the original publication, they
do not recommend modifying most parameters. Through online documentation, user
forums and personal communication with the authors, we arrived on 6 parameters which
we believe would a�ect the sorting quality most greatly. These parameters are brie�y
summarized here.
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1. spike_thresh (θ) - spike detection threshold measured in MADs of the pre-
processed signal

2. clip_size (Nt) - temporal width of snippets used in the algorithm, measured in
milliseconds

3. sensitivity - a clustering parameter which determines the sensitivity of the clus-
tering procedure (internal parameter, with no explicit documentation)

4. sim_same_elec (σsimilar) - a clustering parameter which set a threshold for local
cluster merges

5. cc_mixtures (ccsimilar) - a clustering parameter which removes redundant tem-
plates; this parameter has been deprecated in recent versions of the tool, however
the original publication describes this parameter in detail

6. noise_thr - a clustering parameter which determines the overlap of each cluster
with noise (internal parameter, with no explicit documentation); this parameter
has been deprecated in recent versions of the tool

7. auto_mode - a single parameter to control the automated merging after template
matching

Additionally, the following parameters are required for spike sorting any dataset. 1. sam-

pling rate (frate) - rate of data collection in Hertz 2. �lter frequencies (low and high) -
frequency (in Hertz) used to band-pass �lter the original time series; we used 250 Hz and
5000 Hz for low and high cut o�s throughout this thesis 3. electrode layout - the relative
mapping of the electrodes is required by the algorithm in cases where the electrodes
are dense and clusters needs to be consolidated across electrodes 4. adjacency radius -
the radius within which neighbouring electrodes are expected to record from the same
neurons (measured in the same units as used for the electrode layout) 5. detect sign - a
parameter that determines whether a positive or a negative threshold will be used to �ag
events (takes values of positive or negative)

2.4. Overview and Comparison

The spike sorters described above take markedly di�erent approaches to solve the problem
of spike sorting. Mountainsort uses ISO-CUT + ISO-SPLIT to merge �nely parcellated
clusters of waveforms under the assumption that the waveforms of a single neuron form
a unimodal density function in the high-dimensional space. It takes minimal free param-
eters and propounds a completely automatic approach to spike sorting. In the thesis,
we attempt to vary those few parameters in an attempt to establish the extent to which
spike sorting results can be optimized.
Spyking Circus, on the other hand, uses a heavily parametrized algorithm and at-

tempts to estimate templates of clusters which would best recreate the original signal.
It estimates the templates based on the idea that cluster centers (medians) would be
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points of high local density - an assumption which is similar to that made by Moun-
tainSort. The template matching employed by Spyking Circus di�ers signi�cantly from
the Fitting step used in MountainSort. Notably, Spyking Circus allows for variations
in the amplitude of the templates during template matching, which MountainSort does
not explicitly account for. Additionally, Spyking Circus subtracts templates from the
original signal after they have been matched, which should allow for a better detection of
overlapping spikes, provided both overlapping spikes are detected as separate threshold
crossing events.
In terms of usability, both spike sorters have well documented terminal-based user

interfaces, with optional graphical interfaces to curate or merge clusters. MountainSort
itself is written in Python, but uses the mountainlab-js package as a framework to execute
in.
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3. Surrogate Data (Ground Truth)
Generation

This section deals with the generation of surrogate ground truth datasets. We begin
by describing why surrogate data needs to be generated and the constraints it must
adhere to. We then delve into the details of the methods used for the generation of these
datasets. Lastly, we brie�y compare real data and arti�cial data.
This thesis focuses on the comparison of the performance of spike sorting algorithms

on real-world data. The challenge with spike sorting real data is that we typically do
not know the underlying ground truth, making it di�cult for us to evaluate whether
the result from one sorting is better than another. One standard approach is to rely on
the experience of human experts for spike sorting. However, this renders the analysis
non-reproducible, since it is subject to human bias. Wood et al. (2004b) have shown
that the results of spike sorting performed on the same data by di�erent human experts
vary by a large margin, bringing into question the reliability of manual sorting. Thus, in
the absence of ground truth spiking information, comparing automatic algorithms only
to manual spike sorting is not su�cient.
To objectively assess an algorithm's performance, it must be tested on ground truth

data. There are two ways such ground truth data can be obtained. One way is to record
the activity of individual neurons using patch-clamp techniques or optogenetics while
simultaneously recording the voltage using electrodes (Shew et al., 2010; Hemberger et
al., 2019). Such an approach is not always feasible due to the increased complexity of the
experimental setup and due to the size of the brain limiting our ability to record from the
same population of neurons using di�erent techniques. The other way to obtain ground
truth data is to generate it arti�cially using a model (Rey et al., 2015). This approach is
easier to implement and is only limited by available computational power and our ability
to accurately model the electrical activity in the extracellular areas of the brain. In this
thesis, we take the second approach.
An important goal for us is to assess these spike sorting algorithms in the framework of

a reproducible work�ow (see Chapter 4). To that end, in the following sections, we point
out how each step �ts into our surrogate dataset pipeline. Additionally, each step of the
pipeline accepts certain parameters, allowing the user to tailor the generated datasets to
their needs. These parameters are described wherever necessary.

3.1. Generation of Ground Truth Datasets

To test the accuracy of spike sorting algorithms, we generate datasets that closely resem-
ble real-world data. This section describes the process we use to generate such datasets.
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The spike sorting algorithms we analyze take as input the unprocessed signal recorded
from the microelectrode array (MEA). The unprocessed signal from a single electrode
is composed of the time-ordered values of the extracellular voltage measured on that
electrode, and we call it the recorded signal. We do not process the recorded signals
before feeding them to the sorters, since both algorithms �lter and whiten the signals as
an internal pre-processing step. Our surrogate dataset pipeline, thus, generates arti�cial
recorded signals as output.
A given recorded signal can be broken down into two components, classi�ed on the

basis of their relevance to spike sorting algorithms:

1. the neuronal activity, which is made of the extracellular action potentials originat-
ing from the neurons in the direct vicinity of the recording electrode

2. the background signal, which is the residual recorded signal once neuronal activity
is removed

To generate surrogate data, we superimpose arti�cially generated neuronal activity onto
background signals obtained from experimental data. The sorting algorithms then at-
tempt to extract the neuronal activity from the arti�cial recorded signal, and we assess
the performance of the sorter based on how well it is able to retrieve the embedded
neuronal activity. To distinguish between the signals obtained on real electrodes in the
experimental dataset from the signals we generate, from here on, we refer to each surro-
gate electrode as a channel.
The arti�cially generated neuronal activity is characterised by:

1. Spike times, which are the time stamps of all true spiking events in the recorded sig-
nal for each channel (spike times for each spike are taken as the time corresponding
to the minimal voltage of the spike waveform).

2. Unit labels, corresponding to each spike time, that specify the correct neuronal
identity of the spike, i.e. which unit (putative neuron) the spike originated from.

Any spike sorting algorithm also yields spike times and unit labels. Thus, the fundamen-
tal problem of evaluating a sorter's performance boils down to comparing the sorter's
result to the ground truth spike times and unit labels. To this end, we organize our
ground truth dataset so that it aids in this comparison. We generate two versions of
each dataset and store each in a separate �le. One version - termed the sorter's version -
contains only the recorded signal from each channel. This is the version that is provided
as an input to both sorting algorithms. The second version - termed the evaluator's

version - contains the neuronal activity characterized by the spike times and unit labels.
This version contains all the information we need to evaluate results of the spike sorting
algorithms.
To summarize this distinction more concisely, each generated dataset is independent

and is saved in two versions:

1. Sorter's version, containing:
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• Recorded signals, which are the time-ordered values of the extracellular
voltage, for each channel

2. Evaluator's version, containing the neuronal activity, consisting of:

• Spike times which are the time stamps of all true spiking events in the
analog signal on each channel (spike times for each spike are taken as the time
of threshold crossing)

• Unit labels corresponding to each spiking event which de�ne the correct
units, or clusters of spikes

The generation of this data takes place in three steps. In step 1, we generate the back-
ground signal, which serves as a base on which we superpose arti�cial neuronal activity.
In the next step, we generate this neuronal activity. This step is broken into two parts.
In the �rst part, we generate the waveforms and in the second part we generate the spike
times and insert the waveforms at these spike times onto the background signal.
In summary, the generation of each dataset takes place in the following steps:

1. Generation of background signals

2. Generation of neuronal activity

a) Creation of waveform templates

b) Insertion of waveform templates

We now discuss each step in detail.

3.1.1. Generation of Background Signals

The background signal is that part of an recorded signal that does not contain relevant
spiking events. Here we describe how we generate such signals.
Although we create a distinction between neuronal activity and the background signal,

the background signal is not devoid of all spiking activity. Recorded signals from each
electrode re�ect the complex �ring activity of neurons in an extended volume of brain
tissue around the electrode tip, such that that a large number of neurons are contributing
to the signal. Due to electrical properties of the brain tissue, the extracellular potentials
of only the nearest neurons are observed as signi�cant deviations from the population
average. Thus, we can only isolate the spiking activity of these nearby neurons and we
classify that as neuronal activity.
Thus, due to the complex nature of the underlying spiking activity, we cannot use a

simple noise model to generate realistic realizations of the background signal. Instead,
we obtain di�erent realizations of it by removing the neuronal activity from the recorded
signal obtained on electrodes from real datasets.
We use a dataset obtained from experiments that made use of the Utah array, thus

it contains recorded signals from 96 electrodes. The dataset has been manually spike
sorted by an expert, which means we have access to the underlying neuronal activity in
the recorded signals, i.e., the times and unit labels of each generated spiking event in the
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recorded signal from each electrode. In order to remove this inherent neuronal activity
from the recorded signal, we tried two approaches.
In the �rst approach, we deleted the recorded signal in a window around each spike

time. We did this by iterating over every pair of consecutive spikes detected for each
electrode and concatenating the recorded signal between them. The result was a con-
catenated signal containing all sections of the recorded signal that had no spiking events.
This would be our potential background signal. However, this approach introduced large
changes in the voltage values and also returned shorter signals than the original (Fig-
ure 3.1a). Since the number of spike sorted events changes from electrode to electrode,
the signals extracted from di�erent electrodes of a dataset will have di�erent sizes. This
would introduce an unnecessary complexity when constructing a surrogate dataset from
signals of unequal length. To remedy this, we used a di�erent approach.
In the second approach, we made use of the fact that every spike sorted unit has a

characteristic waveform shape that becomes apparent when you calculate the mean over
all the individual waveforms of the unit. The shape of individual waveforms �uctuates
around this mean. We calculated the mean waveform for every unit found at the end of
manual spike sorting on each electrode. Then, we subtracted this mean waveform from a
window of the same length around every spike time belonging to the unit in the recorded
signal. This method removes the underlying spike shape of every waveform in the signal,
but preserves the inherent noise (variation around the mean) for each waveform, yielding
a signal containing no threshold crossing events, and without introducing any sudden
changes Figure 3.2. Thus, we obtain our background signals Figure 3.1b.
Although, subtracting the mean waveform leads to a smoother signal, it could introduce

artefacts into the signal when the original spike sorting is not completely correct. An
example of such an artefact is show in the cyan insets of Figure 3.1.
This step takes only one parameter - the length of the waveform, which is also the

size of the window that is to be subtracted around each spike, measured in units of the
sampling period of the signal. Additionally, this step relies on the availability of the
analog signals and the corresponding spike sorted data. We obtain as many realizations
of the background signal as there are electrodes in the dataset.

3.1.2. Generation of Neuronal Activity

The neuronal activity contains the spiking information relevant to the spike sorters. Here
we describe how we generated it.
As mentioned in section 3.1.1, the mean waveform of a unit represents the underlying

shape of the action potential generated by the putative neuron the unit represents. The
individual waveforms in the unit vary around this mean due to:

1. The variation in the spike shape caused by the inherent stochasticity in the shape
of the action potential generated by the neuron, combined with small shifts in the
position of the electrode tip relative to the neuron (σinherent)

2. The stochastic nature of the background signal due to the underlying complex
spiking activity (σbackground)

26



0 5000 10000 15000 20000 25000
Time (in units of sampling period)

4000

3000

2000

1000

0

1000

2000

3000

Am
pl

tu
de

Spiketrain Original (unfiltered) Cut (unfiltered) Original (filtered) Cut (filtered)

800 825 850 875 900 925 950 975 1000

4000

3000

2000

1000

0

1000

2000

3000

6000 6200 6400 6600 6800

4000

3000

2000

1000

0

1000

2000

3000

(a) Removal of waveforms.
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(b) Subtraction of mean waveforms.

Figure 3.1.: Extraction of background signals from the recorded signal by (a)

removal of spike sorted waveforms and (b) subtraction of mean waveforms.

The spike trains (blue), recorded signal (orange), recorded signal after removal of wave-
forms (green), �ltered signal (red) and �ltered signal after removal of waveforms (purple),
from top to bottom, are shown in each �gure for approx. 1 second of recording. The
yellow and cyan insets show zoomed views of a small portion of the signals and are com-
parable across the �gures. In (a), due to the removal of many waveforms from the signal,
the green signal is shorter than the orange one, and similarly, the purple signal is shorter
than the red one. The removal of the waveform in the yellow inset causes a noticeable
change in the signal (orange to green). By comparison, the same region appears smoother
in (b) than in (a). Occasionally, the subtraction of the mean waveform in a badly sorted
unit introduces artefacts into the signal (cyan insets).
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Figure 3.2.: Subtraction of mean waveform of unit to obtain residual noise.

The left panel shows all waveforms assigned to a single unit during spike sorting. The red
line is the mean waveform. The right panel shows the same waveforms after subtracting
the mean waveform from each. The signal-to-noise ratio (SNR) (Hatsopoulos et al.,
2007) values in the bottom right corner of each panel show that the residual noise is not
signi�cantly larger than the background noise and such signals will likely not be detected
by any spike sorting algorithm.

In more mathematical terms, given the matrixW a
ij of all waveforms belonging to a certain

unit a, where the W a
ijth element is the voltage measured at the jth time point of the ith

waveform, we calculate the mean waveform,

µaj =

M∑
i

Wij

M
, (3.1)

and its standard deviation,

σaj =

√√√√√√
M∑
i

[(
W a
ij − µaj

)2
]

M
, (3.2)

where M is the number of waveforms in the unit, µa = [µa1, µ
a
2, ..., µ

a
T ] is the mean

waveform of the unit and σa = [σa1 , σ
a
2 , ..., σ

a
T ] is the standard deviation of the waveforms

around the mean. T is the number of time points in each waveform. We can then say

σa = σainherent + σabackground, (3.3)

In this work, we set σinherent = 0. We assume that the inherent stochasticity from action
potential generation causes deviations that are negligible when compared to σbackground
because the variations in the amplitude at the level of individual waveforms is much
smaller than the variations in the amplitude of the background activity. Also, to our
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Figure 3.3: Variation of

waveform shape with λ.
The waveform templates used
in this thesis are combined
according to equation (3.4)
to obtain di�erent wave-
form shapes, shown by lines
of di�erent thickness. The
shapes of the source templates
correspond to λ = 0.0 and
λ = 1.0.

knowledge, there are no measurements of inherent variablity to base our model on.
Therefore, to generate new units in a channel, we must only create a mean waveform

for each unit and superpose it onto the background activity at speci�c time points. We
achieve this in two steps:

3.1.2.1. Generation of Waveform Templates

The mean waveform of a unit represents the characteristic shape of the extracellular
action potential of a neuron, measured at the tip of the implanted electrode. The action
potential is a result of complex biophysical processes that take place inside the neuron.
Although there are existing models which we could use to simulate action potentials
similar to the ones we observe in our dataset, they require model parameters which are
unknown to us. Without speci�c model parameters, the simulated action potentials may
di�er signi�cantly from the ones we observe in our data. This is something we would
avoid, since we are interested in the performance of spike sorting algorithms in the speci�c
context of our datasets.
Instead, we take an approach based on surrogate data. We create new mean waveforms,

or waveform templates, by taking a linear superposition of two source templates. We use
mean waveforms from existing spike sorted units for source templates and employ one
parameter λ that controls the shape of the resulting waveform. More speci�cally, given
two source templates W a and W b, we can construct the waveform template W c as

W c = λW a + (1− λ)W b, (3.4)

λ ∈ R; 0 ≤ λ ≤ 1.

Here, the templates W a, W b and W c are vectors with the number of elements equal to
the temporal width of the template at sampling resolution and λ is a positive scalar. By
varying λ, we can obtain a range of di�erent waveform shapes that transition from W a

to W b Figure 3.3.
For a given arti�cial dataset, the same source templates are used to generate waveform

templates on all channels. The performance of the sorter is analysed independently on

29



data from each channel. Since the λ values represent the di�erent shapes a waveform
can take, we test the sorter on its ability to di�erentiate units that di�er by a certain
∆λ. The di�culty of the sorting task would decrease with an increasing ∆λ.
Once we create these templates for each unit on the channel, they are ready to be

superposed with the background activity.

3.1.2.2. Insertion of Waveform Templates

The �nal step in the generation of arti�cial data is the insertion of the waveform templates
we generated in the previous step into the background signal. To this end, we �rst need
to determine where we should insert the templates. In other words, we need to generate
spike trains - time-ordered series of spike times - for each unit we wish to insert.
Spike trains are generated by randomly sampling time points within a certain time

range based on an underlying probability distribution. Various methods have been de-
veloped which generate spike trains with di�erent properties. However, the spike sorting
algorithms considered here are agnostic of the underlying spiking dynamics of the neu-
rons. Therefore, we employ the homogenous Poisson process (Grün and Rotter, 2010)
to generate spike trains. This is a simple model that takes only one parameter - the
desired mean �ring rate r. The method begins by �rst constructing an Inter-Spike Inter-
val Histogram (ISIH) that follows a Poisson distribution. The spikes times of the spike
train are generated by drawing the time of each subsequent spike from a homogenous
Poisson-distributed ISIH. The homogenous Poisson distribution can be written as

ρ(τ) = re−rτ , (3.5)

where ρ(τ) is the probability density function for detecting the next spike in a time
interval of τ , given an average �ring rate of r. The distribution is called homogenous
because of the constant underlying mean �ring rate. The probability of observing a spike
increases exponentially with time and the rate r determines how steeply the curve rises.
Before we proceed with the insertion of the waveform templates, we must normalize
the amplitude of the waveform template with the amplitude of the �ltered background

signal. The �ltered background signal is obtained by band-pass �ltering the background
signal between 250 Hertz and 5000 Hertz, and as a result of �ltering, it has a decreased
voltage amplitude compared to the original signal. We perform this normalization for
three reasons:

1. the background signal and the waveform template are extracted from di�erent
sources, and it is highly improbable that they have a comparable voltage amplitude,

2. the spike sorting algorithms use the �ltered form of the recorded signal to per-
form the spike sorting, therefore, the waveforms we insert must have an amplitude
comparable to that of the �ltered background signal,

3. this procedure gives us parametric control over the di�culty of the sorting task,
since we can now specify how much larger or smaller each unit must be in relation
to the �ltered background signal.
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To this end, we begin by �ltering the chosen background signal using an acausal 2ndorder
Butterworth bandpass �lter. Let f(t) be the original background signal and F (t) be it's
�ltered counterpart. Let Woriginal be the waveform template for the unit that is to be
inserted. Then, we de�ne

σ�lt = std [F (t)] , (3.6)

as the standard deviation of the �ltered signal around it's mean. Here std(X) represents
the standard deviation of X. Further,

wextent = wpeak − wtrough, (3.7)

where wpeak and wtrough are the values of the waveform template at its maximum and
minimum, respectively. This is the extent of the waveform template which we will scale
to a desired value. The desired extent, w∗extent, is parametrized by an input parameter
α (≥ 0,∈ R). Thus,

w∗extent = 2 · α · σ�lt. (3.8)

Now we can calculate the multiplier we need to obtain the scaled waveform template.
The multiplier m is given by

m =
w∗extent
wextent

, (3.9)

which �nally allows us to calculate the scaled waveform template, Wscaled

Wscaled = m ·Woriginal. (3.10)

We now have all the information we need to create the surrogate recorded signal composed
of the background signal and inserted spikes. At every spike time in our Poisson spike
train, we superpose the waveform template with the (un�ltered) background signal. We
repeat this for every unit we wish to insert into that channel. Since the waveform template
is a vector and the spike times are scalars, we must choose a standard time point in each
vector to be the true time of spiking. We take this as the mid-point of the vector and
de�ne it as

ts =

{
T
2 + 1 if T is odd
T
2 if T is even

, (3.11)

where ts is the spike position and T is the length of the template vector.

3.1.2.3. Overlapping Spikes

During spike sorting, one often comes across channels on which two units have a strong
tendency to �re together. Such channels are di�cult to sort, even for human sorters,
because the waveforms of one unit are in�uenced by the waveforms of another unit. It
then becomes a challenge to distinguish the two units by looking at just their waveforms
or the corresponding representation in PCA space. An example of such a channel is
shown in Figure 3.4. We want to test the ability of the spike sorting algorithms to
correctly sort such channels.
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Figure 3.4.: Overlapping units on a single channel. The instantaneous �ring rate
pro�les of two surrogate units are shown in green (spiketrain_1) and red (spiketrain_2),
along with the instantaneous �ring rate pro�le of the overlapping spike times in black
(overlap_train). The green, red and black vertical lines correspond to individual spike
times of the respectively coloured rate pro�les. Both units here have an average �ring
rate of 10Hz with an overlap fraction of 0.2, which yields an average �ring rate of 2Hz
for the overlapping spikes.

To this end, we create channels that contain two overlapping units. The overlap
between the units is characterized using two parameters - the overlap fraction, and the
jitter. The overlap fraction determines what fraction of spikes from the �rst unit overlap
with spikes from the second unit. This parameter directly determines the extent of the
overlap between the two units. The jitter determines the shift of the spikes of one unit
with respect to those of the other and thus, characterizes the temporal extent of overlaps.
For every overlapping spike ts in the �rst unit, the time of the corresponding spike in the
second unit will be drawn randomly from [ts − j, ts + j], where j is the jitter. The jitter
is measured in units of the sampling period of the data.
Let r be the �ring rate of both units that are to be generated. Let φ be the overlap

fraction. The aim is to generate two spiketrains, S1 and S2, corresponding to the �rst
and second unit, respectively. To generate S1 and S2, we do the following:

1. Using the homogenous Poisson process, we create spiketrains SA, SB and Soverlap,
with �ring rates (1− φ) · r, (1− φ) · r and φ · r, respectively

2. We remove any existing overlaps between SA and SB. We do this by shifting each
overlapping spike from the second spiketrain in a window of [ts − 2 · j, ts + 2 · j],
where ts is the corresponding overlapping spike in the �rst spike train. A pair of
spikes is deemed to be overlapping when they lie within ±j of each other. We do
this step iteratively, until no overlaps remain.

3. We further remove any existing overlaps between SA ⊕ SB and Soverlap. The ⊕
represents a merge of the two spiketrains.
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4. We create S′overlap by jittering every spike in Soverlap by a random value in [−j, j].

5. Finally, we create S1 = SA ⊕ Soverlap and S2 = SB ⊕ S′overlap.

3.1.3. Parametrization

To summarize the generation of independent arti�cial datasets, we list here the parame-
ters used at every step. These parameters have direct equivalents in the

1. Generation of background signal

a) waveform_size - an integer for the length of the waveform that is subtracted
around each spike time, measured in units of the sampling period of the dataset

2. Generation of neuronal activity

a) Generation of waveform templates

i. source_templates - two vectors of length equal to the desired width of
the inserted waveforms, which are linearly combined to create waveform
templates for every unit

ii. linear_multiplier - a positive real number (λ) which is used as a linear
multiplier when combining the source templates to create waveform tem-
plates; the di�erence in λ values between units determines how easy or
di�icult they are to distinguish; takes values between 0 and 1

b) Insertion of waveform templates

i. scaling_factor - a positive real number (α) which determines the relative
amplitude of the waveform template of each unit with respect to the
background signal where it's being inserted; the smaller this value, the
more di�cult this unit is to sort

ii. mean_�ring_rate - a positive real number (r) representing the mean �r-
ing rate of each unit inserted on any channel of a generated dataset

iii. Overlapping spikes:

A. overlap_fraction - a positive real number (φ) which determines the
extent of overlap between both units on the channel; takes values
between 0 and 1

B. jitter - a positive integer (j) that determines the time window within
which overlapping spikes are generated around each other; measured
in units of the sampling period
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4. Spike Sorting Pipelines

In the introduction to this thesis, we described the origin and structure of the data that
we are analysing. We followed that with a description of the automatic spike sorting
algorithms that we evaluate in this thesis and how these algorithms are parametrized.
The previous chapter focussed on arti�cial data generation, wherein we described how
we generate surrogate data which mimics real-world data. This chapter focuses on the
analysis framework we developed on the basis of these components.
Much of the analysis in this thesis requires the repeated execution of speci�c steps, for

instance in the generation of surrogate data and in the automatic spike sorting of datasets.
Wherever we encountered such repeated analysis steps, we organized them into a pipeline.
A pipeline contains all the steps required by a certain analysis arranged in a sequential
and modular fashion. Pipelines allow for reproducible and e�cient execution of a certain
analysis work�ow. For example, the pipelines developed in the following sections can be
seamlessly integrated into the overall data processing work�ow for datasets similar to
the one used in this thesis. This chapter describes the pipelines we designed along with
details of their implementation. It lays the practical groundwork upon which the work
for this thesis was done.

4.1. Basic Structure

Each pipeline described in subsequent sections is intended for a speci�c analysis step and
thus, ful�lls a speci�c purpose. However, the underlying structure of the pipelines can
still be generalized. Figure 4.1 depicts this structure as a �owchart. The dataset gener-
ation/acquisition and automatic spike sorting are common to all pipelines, whereas the
ground truth generation and comparison of results are required only in certain pipelines.
More explicitly, we developed the following three pipelines.

1. Parameter Scan Pipeline

2. Surrogate Dataset Pipeline

3. Spike Sorting Pipeline

We describe each of these separately in the following subsections. Following that discus-
sion, we clarify our choices of �le formats and comment on the design of the con�guration
�les used in the pipelines.
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Figure 4.1.: General structure of the pipeline. The �owchart outlines the under-
lying structure of all presented pipelines. Each box represents a di�erent analysis step.
Boxes with dashed borders indicate steps which are contained in only some pipelines.
Data Provisioning: data acquisition or surrogate data generation. Automatic Spike

Sorting: automatic spike sorting of data using selected algorithms. Ground Truth

Generation: manual spike sorting or surrogate data generation. Comparison and

Visualisation: comparison of results from automatic spike sorting to ground truth.
Dotted lines represent steps or paths speci�c to certain pipelines.

4.1.1. Parameter Scan Pipeline

The automatic spike sorting of data takes place in a sequence of steps, where each step
accepts certain parameters that in�uence the spike sorting results. In order to determine
which parameters yield optimal results for a given sorting algorithm, we analyze the e�ect
of each individual parameter on the �nal result. To this end, we perform a parameter scan

over the space of selected parameters for each spike sorting algorithm. A parameter scan
involves traversing the parameter space spanned by all the parameters of the algorithm to
locate speci�c parameter sets which perform optimally. Since the number of parameter
sets to analyze is typically large, we created a pipeline which could automate this analysis.
The primary aim of this pipeline is to run the spike sorting algorithm for all parameter

sets and compare the result from each run with manual spike sorting performed by
experts. Figure 4.2 gives a diagrammatic representation of the pipeline. For a certain
dataset X, the pipeline proceeds as follows:

1. Data acquired from experiments is located and accessed. The data is stored in
X.nev and X.ns6 �les. The X.nev �le also contains metadata relevant to the
experiment. Additional metadata stored in other �les may be used.

2. The datasets are manually spike sorted by a human expert. The manual spike sort-
ing is performed using the Plexon O�ine Spike Sorter (O�ine SorterTM, Plexon
Inc., Dallas, TX, USA) and yields a �le X-01.nev, where the su�x -01 is an arbi-
trary choice. The sorting results stored in X-01.nev are converted to X-manual.npy.
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Figure 4.2.: Flowchart showing the parameter scan pipeline. The four coloured
boxes contain four distinct parts of the pipeline. A. The experimental data is collected
and stored into the X.nev and X.ns6 �le formats. Metadata related to the experiments
is also stored separately. B. The X.nev and X.ns6 �les are used to create X.mda. This
�le contains the recorded signals from all recording electrodes. C. The acquired data
is spike sorted manually by a human expert and the results are stored in the X-01.nev

�le. The contents of this �le are then stored in X-manual.npy. D. The �le X.mda is
provided to the spike sorting algorithm as input and the spike sorting is performed once
for every parameter set de�ned in the con�guration �le (shown here as Parameters). The
results of each spike sorting are stored in the X-sorter.npy format. Finally, a comparison
between the results in X-sorter.npy and X-manual.npy is made.
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3. The X.ns6 �le, containing the recorded signals, is converted to the X.mda �le.

4. For every parameter set de�ned in the con�guration �le:

a) The X.mda �le is supplied to the spike sorting algorithm, which sorts the
dataset using the de�ned parameter set and returns corresponding output
�les

b) The results in these output �les are consolidated and stored in X-sorter.npy

c) The results stored in X-sorter.npy are compared to the results stored in X-

manual.npy, and the performance of the sorter using that parameter set is
evaluated

5. Based on the comparisons, we obtain a certain set of optimal parameters for each
sorter.

4.1.2. Surrogate Dataset Pipeline

Once we obtain the optimal parameter sets for each algorithm, we run the algorithms
on arti�cially generated surrogate datasets to evaluate their performance under di�erent
theoretical scenarios. Surrogate data generation takes place in two steps - 1. background
signal extraction 2. data generation Background signal extraction is performed once to
obtain a library of background signals from manually spike sorted data. These back-
ground signals are passed on to the data generation step, which yields surrogate datasets
based on the supplied parameters. Multiple realizations of each dataset are generated
so that we can derive statistics over the performance of each algorithm. Finally, each
dataset is then spike sorted using the automatic algorithms and the results are compared
to the arti�cially generated ground truth. We integrate all these steps into a pipeline,
shown in Figure 4.3. The pipeline contains the following steps:

1. Dataset acquired from experiments is located and accessed. These �les are stored
in X.nev and X.ns6 �les.

2. A human expert manually performs spike sorting on this dataset to yield X-

manual.nev.

3. Background signals are extracted from the recorded signals by removing the neu-
ronal activity stored in X-manual.nev (see 3.1.1). These signals are stored in a
.npy �le.

4. Surrogate datasets are generated using the parameters provided in the con�guration
�le. Multiple realizations are created using each parameter set, and each dataset is
stored in two �les - a) .npy �le containing ground truth spiking information b) .mda

�le containing surrogate recorded signals.

5. For each surrogate dataset that is generated

a) the recorded signal (stored in the .mda �le) is provided as input to the spike
sorting algorithm, which yields corresponding output �les
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Figure 4.3: Flowchart show-

ing the surrogate dataset

pipeline. The four coloured
boxes contain the four distinct
parts of the pipeline. A. The ex-
perimental data is collected and
stored into the X.nev and X.ns6

�les. B. The dataset is manually
spike sorted by a human expert
so as to obtain a record of all sin-
gle units. The results are stored
in X-manual.nev. C. Background
signals containing no spiking ac-
tivity are obtained by remov-
ing the single units recorded in
the X-sorted.nev from the X.ns6

�le. The background signals are
stored in a .npy �le. These, along
with the data generation param-
eters, are used to generate sur-
rogate datasets. Each surrogate
dataset has a .npy �le contain-
ing ground truth spike times and
a .mda �le containing the gen-
erated surrogate signals. This
step is repeated multiple times to
yield many realizations from each
parameter set. D. Each surro-
gate signal is automatically spike
sorted and the results are com-
pared to the generated ground
truth.
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Figure 4.4: Flowchart

showing the automatic

spike sorting pipeline. The
four coloured boxes contain
the four major parts of the
pipeline. A. The experimental
data is collected and stored
into the X.nev and X.ns6 �les.
B. The X.nev and X.ns6 �les
are used to create X.mda.
This �le contains the recorded
signals from all electrodes. C.
The acquired data is automat-
ically spike sorted to obtain
the corresponding output �les.
D. The spike sorting result
from the output �les is used in
conjuction with the recorded
data and metadata to create
the �nal X.nix �le, which
contains all the spike times,
corresponding waveforms and
unit labels for all electrodes.

b) the results in these output �les are consolidated into a single .npy �le

c) the results in the .npy �le are compared to the surrogate ground truth stored
in its .npy �le to evaluate sorter's performance on that dataset

Evaluating the performance of each spike sorting algorithm on surrogate datasets as
ground truth gives us a more objective measure of how well the algorithms are able to
retrive underlying neuronal activity.

4.1.3. Automatic Spike Sorting Pipeline

Now that we have obtained the optimal parameter set for each sorter and tested it against
surrogate datasets, we design a pipeline that allows us to spike sort multiple real-world
datasets simultaneously and yield results in a standardized data format. This ensures
that the analysis steps we have used here can be seamlessly integrated into larger data
work�ows. Figure 4.4 is a diagrammatic representation of this pipeline. For each dataset
X to be sorted by a given spike sorting algorithm, it consists of these steps:

1. Dataset acquired from experiment is located and accessed. These �les are stored
in X.nev and X.ns6 �les. Metadata corresponding to the experiment is stored in
the X.nev �le.
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2. The X.ns6 �le, containing the recorded signals, is converted to an X.mda �le.

3. The X.mda �le is supplied as input to the spike sorting algorithm, along with the
set of optimal parameters, to yield a set of output �les

4. The results in these output �les is consolidated and stored into an X-sorter.nix �le.
The X-sorter.nix �le also contains the metadata stored in X.nev and a copy of the
recorded signals from X.ns6.

Since this pipeline accepts as input the �les generated during an experiment and yields
as output a single �le containing spike sorted data, it can be easily integrated into an
existing data analysis work�ow.

4.2. File Formats

At various steps in each pipeline, we used speci�c �le formats to store datasets and
intermediate �les. Since the choices were common across pipelines, we brie�y discuss
here the motivation behind using those �le formats.

• The datasets obtained from experiments are typically stored in proprietary �le
formats created by the manufacturers of the recording equipment. In our case, we
use systems created by Blackrock Microsystems, and the datasets we obtain are
stored in .nev and .ns6 �les. The spike sorting softwares we study do not support
these �le formats, so we must convert our data to a suitable �le format before
we can use the algorithms. We decided to use the .mda �le format to store our
recorded signals since it is a binary �le format supported by both spike sorters.

• The results from both spike sorting algorithms are structured di�erently and stored
in di�erent �le formats. In the parameter scan pipeline and surrogate dataset
pipelines, we convert these results to a common data structure and store them in
the .npy �le format. This �le format was chosen for convenience and cross-platform
compatibility, since we use these �les in later steps to draw comparisons between
the results of the algorithms and ground truth.

• In the automatic spike sorting pipeline, we store the �nal results of spike sorting
in .nix �les. The NIX (Neuroscience Information Exchange) (INCF Data Sharing
Program, 2016) format is an open data format created with the goal of having a
single �le container capable of storing experimental data and metadata together.

4.3. Con�guration Files

Each pipeline we develop requires the speci�cation of certain con�guration parameters
which include the spike sorting or data generation parameters. These con�guration
parameters are provided in the form of text �les and contain necessary information for
the execution of the pipeline, such as the location of the stored datasets, desired location
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for storage of results, number of processing cores to utilize when running the pipeline,
etc. While of practical importance, these details are not relevant to this thesis and are
documented in the accompanying code.

4.4. Snakemake

All the pipelines described in this chapter were created using the Snakemake work�ow
management system (Köster and Rahmann, 2012). According to the its documentation
website,

The Snakemake work�ow management system is a tool to create reproducible
and scalable data analyses. Work�ows are described via a human readable,
Python based language. They can be seamlessly scaled to server, cluster, grid
and cloud environments, without the need to modify the work�ow de�nition.
Finally, Snakemake work�ows can entail a description of required software,
which will be automatically deployed to any execution environment.

The pipelines we created here using snakemake demonstrate this scalability and �exibility.
The same pipelines run seamlessly on a compute cluster with several compute nodes and
cores, as well as on a single, local machine containing just a few cores. This inherent
scalability allows these pipelines to be used on a variety of machines and makes them
easily shareable.
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5. Analysis Framework

In the previous chapter we introduced the spike sorting pipelines which we used to analyse
the performance of the spike sorting algorithms being considered in this thesis. In this
chapter, we describe how we analyze the performance - what metrics we use and how
those metrics relate to performance.
Before we begin describing the analysis framework, it is important that we de�ne what

we mean by an algorithm's performance. Since we're comparing spike sorting algorithms,
the performance of the algorithm could be de�ned as its ability to correctly identify and
classify spiking events in a given dataset. This de�nition implies that there is a correct
spike sorting for every dataset and, in our case, we consider this correct sorting to either
be the result of manual spike sorting by experts or the arti�cially generated surrogate
data. The performance of an algorithm is then determined by comparing the spike times
of the spikes in the spike sorting result to those present in the ground truth. Also,
we want to determine parameter sets which perform optimally for each spike sorting
algorithm, which is why the analysis framework described here is designed to handle
results of parameter scans.
This chapter begins with an introduction to classi�cation of events and the corre-

sponding terminologies we use therein. This is followed by several sections dedicated to
a description of how we derive metrics from these classi�cations.

5.1. Comparing Spike Sorting Results

In this section, we introduce the basic terminologies on which our analysis framework is
based.
The datasets we analyze in this thesis are recorded using microelectrode arrays with

a large inter-electrode spacing, implying that activity from a given neuron cannot be
observed on more than one electrode. Thus, when determining how well an algorithm
performs on a given dataset, we consider signals from each electrode independently.
Furthermore, spike sorting is a combination of a classi�cation problem (�a certain

detected event is a spike, or is not a spike�) and a clustering problem (�a certain spike
belongs to unit x�). This leads to a non-trivial comparison between the ground truth
(GT) and the spike sorting result (SR), since we must �rst determine the best match
between the units in the GT and those in the SR before we can evaluate the quality
of the matches. As an illustration, consider an electrode with two ground truth units
(GTUs) which was spike sorted by an automatic algorithm to obtain one spike sorted
unit (SU) (Figure 5.1). The spike sorting algorithm has found one unit less than in
the GT, and has thus performed sub-optimally. We further wish to evaluate the spike
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Figure 5.1.: Di�erent case scenarios in the comparison of two ground truth

units (GTUs) with a single spike sorted unit (SU). Four case scenarios are depicted
showing four possible ways in which two GTUs (red circles � A and B) can overlap with
a single SU (blue circle � 1 ). The circles represent sets of spike times belonging to each
unit and an overlap between two circles suggests that the two units contain common spike
times. (a) The SU overlaps with GTU B, but not with GTU A. (b) The SU overlaps
with GTU A, but not with GTU B. (c) The SU overlaps with both GTUs, A and B. (d)
The SU overlaps with neither of the GTUs.

sorting performance on a spike-by-spike basis. However, we do not know which of the
two GTUs is best represented by the single SU. In this simple construction, with the two
GTUs being GTUA and GTUB and the SU being SU1, we have four possible scenarios
(compare �gures Figure 5.1 (a) - (d), respectively)

1. Case 1: SU1 has spikes in common with (or, overlaps with) only GTUB

2. Case 2: SU1 overlaps with only GTUA

3. Case 3: SU1 overlaps with both GTUA and GTUB

4. Case 4: SU1 has no overlaps with either GTUA or GTUB

In cases 1 and 2, SU1 can be trivially matched with GTUA and GTUB, respectively.
Case 4 is also trivial because SU1 does not have any events in common with the GT.
However, in case 3, we must decide on a criterion which assigns the correct GTU to SU1.
It is a recurring case in the results we obtain from our spike sorting algorithms. Before
we explain how to resolve this, we must �rst introduce some concepts.

5.1.1. Basic De�nitions and Metrics

Consider the simple scenario depicted in Figure 5.2, with one GTU (red circle, GTUA)
and one SU (blue circle, SU1) which overlap with each other. The bounding box repre-
sents the set of all events. We then categorize the spiking events as follows.

True Positives (TPs) Events common to both GTUA and SU1 (correct classi�cations).
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Figure 5.2.: Simple case scenario of an overlap between one GTU and one SU

on a single electrode. The Venn diagram depicts the case where one GTU (red) is
compared to one SU (blue) on a single electrode. The circles in the diagram represent
the spike times of each unit, with the size of the circle corresponding to the relative
number of events. In the case above, for reasons of simplicity, both circles have the same
size, implying that the units have the same number of spikes. The labels within the
circles represent TP: True Positives; FP: False Positives; FN: False Negatives; TN: True
Negatives.

False Positives (FPs) Events sorted into SU1, but are not present in GTUA (false
alarms).

False Negatives (FNs) Events present in GTUA, but not in SU1 (misses).

True Negatives (TNs) Events which are neither present in GTUA nor in SU1 (correct
rejections).

Each event represented in Figure 5.2 can be placed in one of the above categories. By
comparing the number of events in these categories, it is possible to characterize the
goodness of the match between, in this case, GTUA and SU1.
Using these categories, we derive metrics which characterize the performance of the

spike sorting algorithm (Powers, 2011). Each of these metrics is always computed for a
pair of units (i.e. one GTU versus one SU), and yields information about the level of
agreement between the two units.

1. Precision (P ) is a measure of the proportion of spikes in SU1 which were correctly
classi�ed. This measure must be maximized for a good spike sorting. It is given
by the formula

P =
TP

TP + FP
(5.1)

2. Recall (R) is a measure of the proportion of the spikes inGTUA which were correctly
classi�ed into SU1. This measure must be maximized for a good spike sorting. It
is given by the formula

R =
TP

TP + FN
(5.2)

3. Fallout (F ) indicates what proportion of spikes were classi�ed into SU1 which
should not have been classi�ed into SU1. This measure must be minimized for a
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good spike sorting. It is given by the formula

F =
FP

FP + TN
(5.3)

4. F1-Score (f1) combines the information in precision and recall, and is high when
both precision and recall are high. Thus, this measure must be maximized for a
good spike sorting. It is given by the formula

f1 = 2 · P ·R
P +R

(5.4)

=
2 · TP

2 · TP + FP + FN
(5.5)

5.1.2. Detailed Scenario

In section 5.1.1, we introduced the classi�cation categories for the comparison of a pair of
units and listed measures which could be used to characterize the quality of spike sorting.
However, the scenarios we considered in Figure 5.1 and Figure 5.2 were simpli�ed and
the measures we de�ned there cannot be used directly on units obtained from real data
because of the following issues.

1. Spike times from the GT and the SR are not aligned. For every spiking event
detected in the recorded signal, the time of threshold crossing is �agged as the
spike time for that event in the GT. In contrast, for both spike sorting algorithms,
the time of the minimum of the corresponding spike waveform is �agged as the
spike time for the event. This leads to a discrepancy in the precise spike time
of each event. Moreover, each spike sorting algorithm uses a di�erent method to
�lter and whiten the recorded signals. Di�erences in �ltering a�ect the time of the
minimum of individual waveforms in the processed signal, causing a discrepancy in
precise spike times even between the two automatic spike sorting algorithms. This
discrepancy prohibits a spike-by-spike comparison of the spiking events in the GT
and the SR.

2. The set of ground truth events and the set of spike sorted events are not iden-
tical. Although we compare GTUs and SUs found on the same electrode, it is
not necessary that the GT and the SR contain comparable sets of spiking events.
The spiking events detected during automatic spike sorting depend, in particular,
on the detection threshold speci�ed in the parameters (with the number of events
decreasing as the threshold is increased). As a result, the SR may have more or
less spiking events than the GT. In order to be able to perform a spike-by-spike
evaluation of the two, we must account for this imbalance in the number of spiking
events between both sets.

3. The number of units and the number of spikes per unit varies between the GT and
the SR. In the examples earlier, we considered simple cases where the number of
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Figure 5.3.: Alignment of spike times. A small section of the �ltered signal from
one electrode is shown as the black trace. Spike times from di�erent sources are shown
as coloured vertical lines: original spike times from manual sorting (blue), original spike
times from Spyking Circus (green), original spike times from Mountainsort (orange),
aligned spike times from manual sorting (sky blue), aligned spike times from Spyking
Circus (dark green) and aligned spike times from Mountainsort (maroon). The left inset
(pink) shows a typical case where the original spike time from manual sorting is a few
time stamps before the minimum of the dip in the �ltered signal (corresponding to the
extracellular spike waveform), while original spike times of the two sorters (green and
orange) are the same. After alignment, the spike times from all three sources are aligned
(sky blue, dark green, maroon). The right inset shows a case with a complex waveform
shape (probably caused by overlapping waveforms) of which only one was detected in
manual spike sorting and both were �agged as spikes in Mountainsort (Spyking Circus
did not �nd this spike). Our alignment method �nds the minimum correctly, matching
only the �rst dip and not the second.

GTUs and SUs was small and the number of events in each unit was similar. In
real data, however, the number of units in the GT can vary signi�cantly from the
number of units in the SR. The relative number of events in the units also vary
greatly. This leads to the possibility that each SU overlaps with multiple GTUs -
a case which must be speci�cally handled.

To be able to apply the measures of 5.1.1 to real data, we begin by aligning the spike
times of the GT and the SR (issue 1).

5.1.2.1. Aligning Spike Times

An example of the misalignment of spike times is shown in Figure 5.3 for real data from
one electrode. We remedy the misalignment of spikes in two steps:

1. by adjusting the spike times in the GT. On each electrode of a dataset, we look for
the minimum of the �ltered signal t′gt around every GT spike time tgt in a window

46



of [tgt, tgt + w], where w is 30 × 33.33µs (33.33µs is the sampling period of the
recorded signal); t′gt is the new time stamp of that spiking event.

2. by adjusting the spike times in the SR. We align each spike time in the SR to its
closest adjusted GT spike time. We accomplish this by iterating over every SR
spike time tss in an increasing order and looking for a GT spike time in a window
of [tss − u, tss + u], where u is 15× 33.33µs. If a GT spike at time t′′gt is found, we
assign a new time stamp t′ss = t′′gt to that spiking event. Otherwise, t

′
ss = tss.

This two step approach ensures that spike times corresponding to the same spiking event
from di�erent spike sorters are aligned, allowing for a direct spike-by-spike comparison.
We now address issues 2 and 3 outlined earlier, which are a result of di�ering detec-

tion thresholds and sorting quality. With di�erent detection thresholds, the automatic
algorithm �nds more or less events than those seen by the human expert during manual
spike sorting. Events found by the automatic spike sorter are either clustered into units
or discarded entirely. During manual spike sorting, events which have not been assigned
to any single unit are stored in a noise unit, hereafter referred to as the ground truth
noise unit (GTN). For synthetic ground truth data, there are no discarded events. The
categories de�ned in 5.1.1 are insu�cient to describe the various possibilities that arise
when evaluating a sorter's performance on real world data. We must construct a more
nuanced picture than the one in Figure 5.2 to account for all possibilities.

5.1.2.2. Detailed Scenario

Consider the scenario depicted in Figure 5.4a of an electrode containing two GTUs
(GTUA and GTUB) and one noise unit GTN (labeled C and shown with a dashed
border in the �gure). After automatic spike sorting, three SUs were found by a certain
algorithm (SU1, SU2 and SU3). Each SU can be matched with any of the of the GTUs,
but not with the GTN (because it is, by de�nition, a set of noise events). For every
possible GTU-SU pair, we introduce new categories for the events in those units. As
an example, consider the pair GTUA and SU1. We de�ne the following categories and
subcategoreis of spiking events for this pair.

True Positives (TPs) Events common to both GTUA and SU1

False Positives (FPs) Events sorted into SU1 which are not present in GTUA; these are
further categorized into

New (FPnew) Events sorted into SU1 which are not present in any unit in the GT

Noise (FPnoise) Events sorted into SU1 which are present in the GTN

Misclassi�ed (FPmisclassi�ed) Events sorted into SU1 which are present in GTU2

(or any other GTU)

False Negatives (FNs) Events present in GTUA which are not sorted into SU1; these
are further categorized into
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(a) Venn Diagram Compar-
ison.

1 ⇐⇒ A 2 ⇐⇒ B Subcategory Category

b h TP TP

a e FPnew

FPk m FPnoise

f d FPmisclassified
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TN

l +m k + l TNnoise

h+ i b TNsorted

g c TNmissed

n n TNmissed noise

(b) Table of Comparisons.

GTUA GTUB
SU1 0.8 0.2

SU2 0.2 0.85

SU3 0.0 0.05

(c) Finding Optimal Unit
Matches

Figure 5.4.: Illustrative example of comparing spike sorting results on a single

electrode in order to de�ne di�erent events. (a) Example of overlapping sets of
spikes corresponding to units on a certain electrode. Blue shapes depict the sets covered
by events of SUs (1, 2 and 3) . Red circles depict the sets covered by events of the GTUs
(A, B and C). The red circle with a dashed border represents the GTN. The regions of
overlap between red and blue shapes denote events which are common to both. Each
region is marked with a lowercase letter used in (b) to explain various subcategories of
classi�cations. (b) A tabular description of the various regions in found in (a). The �rst
column lists regions corresponding to the di�erent categories and subcategories for the
case where GTUA and SU1 were matched. The second column lists these regions for a
match between GTUB and SU2. (c) A grid with SUs on the left and GTUs on the top,
showing how optimal matches are determined for the scenario depicted in (a). Each cell
shows an example f10 score for the corresponding two units (GTU and SU). The cells in
green indicate successful matches, while those in red indicate failed matches.
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Classi�ed (FNclassi�ed) Events in GTUA which are sorted into neither SU2 nor
SU3 (nor any other SU)

Missed (FNmissed) Events in GTUA which were not present in any unit in the SR

True Negatives (TNs) Events not sorted into SU1 which are also not present in GTUA,
but exist in other GTUs or SUs; these are further categorized into

New (TNnew) Events not present in any GTU, which are detected and sorted into
another SU

Missed (TNmissed) Events fromGTUB (and any other GTU) which are not present
in any SU

Noise (TNnoise) Events from GTN which are sorted into other SUs

Sorted (TNsorted) Events sorted into other SUs which are also present in other
GTUs

Missed Noise (TNmissed noise) Events from GTN which were not sorted into any
SUs

To summarize these, the total number of events for each category is

FP = FPnew + FPnoise + FPmisclassi�ed, (5.6)

FN = FNmissed + FNclassi�ed, (5.7)

TN = TNnew + TNnoise + TNmissed + TNsorted + TNmissed noise (5.8)

The new de�nitions introduced here account for events which might be present in the
GT and not present in the SR, or vice versa. We use these de�nitions to modify the basic
metrics de�ned in 5.1.1 in order to be able to �nd matching pairs of units.

5.1.2.3. Matching Units

We use the measures de�ned above to match SUs to the GTUs that they resemble the
most. For this, we de�ne the modi�ed forms of f1, P and R given by

P0 =
TP

TP + FPnew + FPmisclassi�ed
(5.9)

R0 =
TP

TP + FNmissed + FNclassi�ed
(5.10)

f10 = 2 · P0 ·R0

P0 +R0
(5.11)

=
2 · TP

2 · TP + FPnew + FPmisclassi�ed + FNmissed + FNclassi�ed
(5.12)

Here, P0 describes what proportion of spikes in the SU are from a given GTU, while
speci�cally excluding events classi�ed as noise in the GTN. Noise events are excluded
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because the number of events in the GTN shows a large variation across electrodes. This
variation arises from the subjective manner of choosing a detection threshold for each
electrode during manual spike sorting. A lower detection threshold increases the chances
of obtaining noise events. In order to discount for this subjectivity in looking for best
matched units, we ignore the GTN events.
R0 measures the proportion of the spikes from the GTU are present in the SU. When

both P0 and R0 approach their maximum values of 1, the SU can be said to closely
resemble the GTU. The f10 score is the harmonic mean of P0 and R0 and, thus, combines
the information contained in them. When both P0 and R0 approach 1, f10 takes values
approaching 1. When either P0 or R0 or both are low, the f1 score is also low. In order
to ascertain which pairs of units on a certain electrode should be matched, we calculate
the f10 score for every pair and look for the optimal matches by choosing those pairs
which have the highest f10 scores (see Figure 5.4c for an example with dummy values �
green cells indicate a match, red cells are not a match). Once all optimal SU-GTU pairs
have been found, we proceed with evaluating the spike sorting quality.

5.2. Metrics for Evaluation

In 5.1.1, we introduced categories and sub-categories into which events could be segre-
gated when comparing a SU-GTU pair. We then introduced metrics which characterized
the performance. However, these metrics don't assess all aspects of the spike sorting. In
this section, we introduce more metrics which work together to give a more comprehen-
sive picture of the spike sorters' performance and help determine optimal parameter sets
for each algorithm.

5.2.1. Classi�cation Performance Score

The idea behind this metric is to consolidate information held in equations 5.1, 5.2 and
5.3 because these three metrics account for all sub-categories of events. Precision, Recall
and Fallout are widely used in various �elds of research to evaluate the perfomance of
algorithms. Typically, these metrics are used for problems where the classi�cation al-
gorithm yields the probability with which each observation belongs to di�erent classes.
A variable probability threshold is used to set the minimum probability for each obser-
vation to belong to a certain class. The Fallout, Recall and Precision are computed for
di�erent probability thresholds in order to determine the best performing classi�er. This
is achieved with the help of Receiver Operating Characteristic (ROC) curves (Fawcett,
2006) and Precision-Recall (PR) curves (He and Garcia, 2009).
An ROC curve is a plot of Recall (ordinate) versus Fallout (abscissa) for di�erent

observations and decision thresholds. ROC curves provide a succinct overview of the
performance of a certain classi�er. Since Fallout and Recall take values between 0 and 1
� with a high Recall and low Fallout implying a good classi�cation � the point (0, 1) on
the plot represents a perfect classi�cation. For any classi�er that performs better than
chance, all points on the plot lie above the diagonal, the line of no discrimination. To
construct an ROC curve, one can plot the Fallout and Recall values from a classi�cation
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result for di�erent probability thresholds and connect these points to form a continuous
curve.
A PR curve is a plot of Precision (ordinate) versus Recall (abscissa) for di�erent

observations and decision thresholds. In contrast to ROC curves, PR curves rely on
Precision and Recall � both of which should be maximized in order to obtain a good
classi�cation. Since both take values between 0 and 1, the point representing perfect
classi�cation on a PR plot is (1, 1). These curves are typically used in place of ROC
curves in cases when there is a large number of TNs which skew the Fallout to small
values. By not accounting for the TNs, PR curves provide a more accurate estimate of the
classi�er's performance when working with imbalanced datasets (Saito and Rehmsmeier,
2015). Similar to ROC curves, PR curves can be created by plotting Precision and Recall
values from a classi�cation result and connecting the points to form a continuous curve.
Spike sorting algorithms, however, are not probabilistic classi�ers. Each spiking event

is assigned a de�nite class (unit) by the algorithm. We then match each SU with a GTU
on the same electrode (as described in 5.1.2.3). The quality of each match is computed
using the P , R and F metrics. These metrics translate to single points in the ROC and
PR spaces. Since we obtain the spike sorting results from a large range of parameter sets,
each GTU in the dataset is represented by as many unique points in the ROC and PR
spaces as the number of parameter sets in which it was matched. These points provide
a graphical overview of the sorter's ability to retrieve events of each individual unit for
di�erent parameter values.
The dataset we analyze in this thesis has 175 GTUs and the algorithms are run over

9,216 (Spyking Circus) and 18,432 (Mountainsort) parameter sets. The performance of
each GTU across all these parameter sets cannot be analyzed graphically. We instead
develop scores which reduce the performance of each matched pair to a single value for
both ROC and PR spaces, making use of the fact that the ROC and PR plots have points
� (0, 1) and (1, 1), respectively � which represent optimal classi�cation. The �rst score,
SFR, calculates the Euclidean distance of each point on the ROC plot to (0, 1) and is
de�ned as

SFR =
√

(1−R)2 + (0− F )2

=
√

(1−R)2 + F 2.
(5.13)

This score characterizes the quality of each matched pair of units on the ROC plot.
The second score, SRP , which calculates the Euclidean distance of each point on the PR
plot to (1, 1) and is de�ned as

SRP =
√

(1− P )2 + (1−R)2. (5.14)

This score characterizes the quality of each matched pair on the PR plot. Both SFR and
SRP are de�ned such that a value of 0 would represent a perfect match.
Now that the information held in the ROC and PR plots has been condensed into single

value scores, we develop the classi�cation performance score, SCP , to further condense
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Figure 5.5.: ROC and PR curves. (a) ROC curve with four arbitrarily chosen points
A, B, C and D. The regions shaded with a yellow gradient indicate a conservative sorting,
with a darker shade for more conservative results. The regions shaded with a green
gradient indicate a liberal sorting, with a darker shade for more liberal results. These
colour gradients have the same interpretation for all panels of the �gure. The dashed line
from (0, 0) to (1, 1) is the line of no discrimination, and all points on the ROC plot lie
above this line. SFR is shown for point A. The point of optimal classi�cation is shown in
red in all relevant panels (here, shown at (0, 1)). (b) PR plot with points corresponding
to those shown in (a). SRP is shown for point A. (c) SFR and SRP values for the points
A � D are plotted, and SCP is shown for point A. (d) Sample distributions of CRP (top
subpanel) and CFR (bottom subpanel), with positions of A, B, C and D denoted in blue
vertical lines.
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these values. It is de�ned as

SCP =

√
(0− SFR)2 + (0− SRP )2

2

=

√
S2
FR + S2

RP

2
.

(5.15)

which is the Euclidean distance of the point (SFR, SRP ) from the origin at (0, 0) on
a plot of SFR versus SRP , normalized to values between 0 and 1. A value of 0 for
SCP indicates a perfect classi�cation and a value of 1 indicates a completely incorrect
classi�cation (0 TP events and 0 TN events).

5.2.2. Conservativeness Scores

The scores de�ned in 5.2.1 give an intuitive idea of how far away a certain match of SU
and GTU is from a perfect classi�cation. However, they do not give an indication of
where the corresponding points lie within the ROC and PR plots. The location of points
on these plots provide insight into the liberal/conservative nature of the algorithm. A
liberal algorithm would try to get as many TP events as possible, at the risk of a large
number of FP events. A conservative algorithm would try to minimize the number of
FP events, potentially leading to fewer TP events and more FN events. For the ROC
plots, these regions are

1. low F and low R. Points in this region represent a conservative classi�cation, since
the algorithm sacri�ced TPs (low R) to get a smaller number of FPs (low F ).

2. high F and high R. Points in this region represent a liberal classi�cation, since the
algorithm allowed for a many FPs (high F ) in order to get many TPs (high R).

3. low F and high R. Points in this region represent a balanced classi�cation, with a
small number of FPs and a high number of TPs.

On the PR plot, these regions are

1. low P and high R. Points in this region represent a liberal classi�cation, since the
algorithm allowed for a high number of FPs (low P ) in order to get fewer FNs (high
R).

2. high P and low R. Points in this region represent a conservative classi�cation,
since the algorithm preferred a high number of FNs (low R) in order to minimize
the FPs (high P ).

3. high P and high R. Points in this region represent a balanced classi�cation, with
a small number of FPs and FNs.

This information can be used to infer the general tendency of the algorithm to be lib-
eral/conservative. However, the scores SFR and SRP de�ned earlier do not capture this
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aspect because they use the Euclidean distance, which treats points in any direction
equally. Thus, we introduce two more metrics which capture the di�erences in the con-
servativeness of the algorithms. The �rst conservativeness score is

CFR = 1−R− F (5.16)

which would indicate a conservative sorting for positive values and a liberal sorting for
negative values on the ROC plot. The second conservativeness score is

CRP = P −R (5.17)

which would indicate a conservative sorting for positive values and a liberal sorting for
negative values on the PR plot.
Since these scores are de�ned for each matched pair, a distribution of these scores over

all matched pairs in a dataset for a given parameter set would indicate the conservative-
ness of the parameter set.

5.2.3. Other Metrics

In addition to the scores developed in section 5.2.1 and section 5.2.2, we use the following
metrics to account for more nuanced aspects of the spike sorting quality

5.2.3.1. Noise Fraction

Given a matched SU-GTU pair on a certain electrode, we determine what fraction of
events in the SU belong to the GTN of that electrode. The noise fraction, Mnoise, is
de�ned as

Mnoise =
FPnoise
TP + FP

(5.18)

5.2.3.2. New Fraction

Given a matched SU-GTU pair on a certain electrode, we determine what fraction of
events in the SU are not present at all in the GT. The new fraction, Mnew, is de�ned as

Mnew =
FPnew

TP + FP
(5.19)

5.2.3.3. Units Ratio

On a certain electrode, the SR may contain more or less units than the GT. If an algorithm
retrieves all GTUs on an electrode but also yields other SUs, it would be an undesirable
trait. Likewise, if the algorithm retrieves a few GTUs completely, but is unable to �nd
the rest, it would also be an undesirable trait. We de�ned the units ratio as the ratio of
the number of SUs to the number of GTUs on a certain electrode.
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5.2.3.4. Retrieved Units

Most metrics discussed so far looked at the classi�cation performance for a pair of
matched units, which is a local measure of performance. However, we also want to
look at the algorithm's global performance across the dataset. The number of units that
a sorter retrieves is a general measure to ascertain how closely the SR matches the GT for
a certain parameter set. Thus, for each parameter set, we determine how many GTUs
were matched across the dataset with SUs and use this number as a metric for each
parameter set.
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6. Results

In this chapter we describe the results of the evaluation of the two spike sorting algorithms
based on the concepts and tools introduced earlier. We �rst discuss the parameter scans
of the two spike sorting algorithms by comparing the outcomes to a sorting performed
by a human expert, and, thus infer the set of optimal parameter sets for each. Then, we
show the results of spike sorting surrogate data with these optimal parameters.

6.1. Parameter Scans

Each spike sorting algorithm was subject to a detailed parameter scan over the space
spanned by the parameters de�ned in 2.2 and 2.3. We performed the scan in two passes.
In the �rst pass, we chose sparse values for each parameter so as to determine which
subsets of parameters signi�cantly a�ect the spike sorting result. We call this subset the
primary parameters, while the rest are called secondary parameters. For the second phase,
we performed a more �ne-grained search for each primary parameter while keeping the
secondary parameters at constant, optimal values. This approach allowed us to eliminate
the confounding e�ect of the secondary parameters on our performance metrics.

6.1.1. MountainSort

For MountainSort, we chose the parameter values tabulated in Table 6.1. In the �rst
pass, by varying each parameter over the speci�ed values, we cover a total of 18,432
parameter sets. From the results of each parameter set, we obtain multiple matched
pairs across all 96 electrodes. For each parameter set, we calculate the mean SFR value,
mean SRP value and the total number of retrieved GTUs, summarized in Figure 6.1a.
We observe the following:

1. Only the parameters detection_threshold, firing_rate_threshold, isolation
_threshold and noise_overlap_threshold appear to have an e�ect on the spike
sorting performance, since the colours corresponding to the di�erent parameter
values have a discernible structure only in those plots.

2. We cannot determine any parameter set which lies close to the point of optimum
and retrieves a relatively large number of GTUs, because all points towards the
lower left corner of each plot have a small size.

3. Certain parameter sets (those in the top right corner of each plot) retrieve a rela-
tively small number of units and also perform poorly.
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(a) MountainSort (b) Spyking Circus

Figure 6.1.: Mean SFR vs. mean SRP , coloured by the various parameter

values for both MountainSort (a) and Spyking Circus (b). Each single point
represents the mean SFR and mean SRP values of a single parameter set, averaged over
all matched pairs discovered across all electrodes. Within a panel, each plot contains
points at the same positions, however the size colours and sizes of the points vary across
the plots. The size of each point indicates the relative number of GTUs retrieved by that
parameter set (hence, larger points indicate a better spike sorting). The colour indicates
the value of the parameter being varied in each plot. This plot gives an overview of the
classi�cation performance of both spike sorters. Note the di�erence in the x- and y-limits
between (a) and (b).
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Figure 6.2.: Letter value plots showing distributions of various metrics for

individual values of each parameter of MountainSort during the �rst pass of

the parameter scan.
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Parameter Name Parameter

Type

First Pass Second Pass

detect_threshold primary 4, 5, 6, 7 4, 5, 6, 7

detect_interval secondary 10, 20, 30, 40 10

clip_size secondary 40, 50, 60, 70 40

firing_rate_threshold secondary 0.0, 5.0, 10.0 0.0

isolation_threshold primary
0.0, 0.97, 0.98,

0.99

0.97, 0.975, 0.98, 0.985,

0.99, 0.995

noise_overlap_threshold primary
0.0, 0.2, 0.4, 0.6,

0.8, 1.0
0.1, 0.2, 0.3, 0.4, 0.5

peak_snr_threshold secondary 0.0, 1.5, 2.0, 2.5 1.5

Table 6.1.: MountainSort parameter values used for the �rst and second passes of the
parameter scan.

The classi�cation performance scores alone, however, are not su�cient to select good
parameter sets for spike sorting, and we need to observe the e�ect of the individual
parameters on more aspects of the spike sorting result. To this end, we make use of
letter value plots (see Appendix A for a brief introduction on how to read letter value
plots). Figure 6.2 shows the variation of di�erent performance metrics with individual
values of spike sorting parameters. The letter value plots show distributions of the values
of each performance metric over all matched pairs in the dataset. They provide a de-
tailed overview of the spike sorting performance across multiple spike sorting parameters.
Several inferences can be drawn from this �gure:

1. In line with the observations from Figure 6.1a, only the parameters detect _threshold,
isolation_threshold, firing_rate_threshold and noise_overlap_threshold

have an e�ect on the spike sorting quality, whereas the parameters clip_size,
detect_inteval and peak_snr_threshold do not seem to a�ect it. This is ev-
ident by the way the distributions of the performance metrics change when the
corresponding spike sorting parameter is changed.

2. The parameter detect_threshold a�ects the spike sorting performance most sig-
ni�cantly. For a detect_threshold of 4, a typical matched pair tends to have an
unacceptably large number of false positives. We do not exclude that value in the
second pass of the parameter scan, though, to see if the number of false positives
decreases when other confounding parameters are removed.

3. The parameter noise_overlap_threshold appears to plateau in its performance
above a value of 0.4, which we will use as an upper bound for the second pass of
our parameter scan.

4. The parameter isolation_threshold a�ects the spike sorting performance only
with values close to 1.0, so we will use only those values in the second pass.
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5. Certain parameters have an intuitive explanation, such as firing_rate_threshold
(minimum required �ring rate for each unit) and peak_snr_threshold (minimum
required SNR for each unit). They are used in the �nal curation phase of the algo-
rithm and only play a role in �ltering out units which do not match the speci�ed
criteria. Instead of determining optimal parameters for these, we use values typi-
cally used by experimentalists working on this dataset. These can and should be
adjusted to the dataset being worked on since the typical �ring rate and SNR of a
unit is likely to change based on the source and quality of the data.

To summarize, we determine values for the second pass of the parameter scan, given in
Table 6.1, by analysing the letter value plots in Figure 6.2. The results for the second
pass, wherein we covered a total of 120 parameter sets, are shown using the strip plots
in Figure 6.3a. Strip plots give a more accurate representation of the distribution of the
underlying data when using fewer parameter sets, due the relative sparseness of the data.
We infer the following from the strip plots.

1. The detect_threshold parameter strongly a�ects the quality of spike sorting. A
value of 4 for this parameter yields large numbers of FP and FN events, in line with
our observations from the �rst pass. A value of 5, however, shows a good balance
between the number of retrieved units (last row in Figure 6.3a) and classi�cation
performance (third row in Figure 6.3a). Thus, we set a value of 5 as the optimal
detect_threshold. Higher values lead to a more conservative sorting.

2. The isolation_threshold parameter shows a marked, albeit detrimental, e�ect on
the sorting performance for values above 0.985. Thus, we set the value of 0.985 to
be optimal for this parameter. Higher values of this parameter reduce the numbers
of FP and FN , along with a relatively large decrease in the number of retrieved
units, implying a more conserative performance. Lower values lead to a slightly
more liberal performance. There is no evident e�ect of this parameter on the SCP .

3. The noise_overlap_threshold parameter shows a marked change in performance
above a value of 0.1 (see FP , FPnew and retrieved_units) and then plateaus in
its performance. For a value of 0.1, the algorithm retrieves a smaller number
of units but with a correspondingly smaller number of FP events. We, how-
ever, set a value of 0.2 as optimal in order to �nd a balance between the num-
ber of units retrieved and the number of FN and FP events. Lower values for
the noise_overlap_threshold may be used for a more conservative spike sorting,
whereas higher values would yield a slightly more liberal performance.

4. Overall, we observe a sparse structure in the results of the second pass, wherein
points are clustered around certain values for each metric, rather than forming a
continuum.

Additional �gures which support our observations are shown in the Appendix B. To
summarize, we list parameters selected for di�erent scenarios in Table 6.2.
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(a) MountainSort (b) Spyking Circus

Figure 6.3.: Strip plots showing distributions of various metrics for individual

values of each parameter of MountainSort during the second pass of the

parameter scan.
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Parameter Name Optimal Liberal Conservative

detect_threshold 5 4 6

detect_interval 10 10 10

clip_size 40 40 40

firing_rate_threshold 0.0 0.0 0.0

isolation_threshold 0.985 0.97 0.99

noise_overlap_threshold 0.2 0.3 0.1

peak_snr_threshold 0.0 0.0 0.0

Table 6.2.: Selected parameter sets for MountainSort. Optimal set represents a balance
between liberal and conservative sorting.

Parameter Name Parameter Type First Pass Second Pass

spike_thresh primary 6, 7, 8, 9 6, 7, 8, 9

clip_size secondary 2, 3, 4 2

sensitivity secondary 3, 4, 5, 6 6

sim_same_elec secondary 1, 2, 3 3

cc_mixtures secondary 0.1, 0.4, 0.7, 1.0 0.1

noise_thr primary 0.1, 0.4, 0.7, 1.0
0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1.0

auto_mode primary 0.1, 0.4, 0.7, 0.9
0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9

Table 6.3.: Spyking Circus parameter values used for the �rst and second passes of the
parameter scan.

6.1.2. Spyking Circus

We use the same procedure for the parameter scans for Spyking Circus as we did for
MountainSort. The parameter values we use for spyking circus are tabulated in Table 6.3.
In the �rst pass, we cover a total of 9,216 parameter sets, and analyze all matched pairs
across all 96 electrodes for each parameter set. We calculate the mean SFR, mean SRP
and the total number of retrieved units for each parameter set and generate the plots
shown in Figure 6.1b. From these, we observe the following.

1. The parameters spike_thresh, noise_thr and auto_mode a�ect the quality of
the sorting signi�cantly, while the other four parameters do not seem to have an
appreciable e�ect on the sorting performance. This can be seen by the movement
of the cluster of points corresponding to di�erent parameter values across the SFR-
SRP space.

2. All parameter sets are localized in a relatively small region of the SFR-SRP space.
This implies that although the algorithm is highly parameterised, the performance
is not very sensitive to parameter changes.
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3. There is limited variation in the relative sizes of all points, which suggests that the
algorithm retrieves about the same number of GTUs irrespective of the underlying
parameter set used.

We now make use of letter value plots to consolidate information from other performance
metrics for the results from the �rst pass of the parameter scan. These are shown in
Figure 6.4, from which we infer the following.

1. The parameters spike_thresh, noise_thr and auto_mode are the only ones which
seem to a�ect the spike sorting results. Any changes in the values of the other four
parameters � clip_size, sim_same_elec, sensitivity and cc_mixtures � do not
a�ect the performance metrics signi�cantly.

2. The parameter spike_thresh has the largest e�ect on all performance metrics, with
the SCP improving slightly as the parameter value increases. For a parameter value
of 6, the number of FP events is on the order of tens of thousands and a typical
matched pair has approx. 40% FPnew events. In comparison, for a parameter value
of 9, there is a three-fold decrease in the number of FP events (median values from
approx. 22000 to approx. 7000) and only a 1.7-fold increase in the number of
FNmissed events (median values from approx. 1000 to approx. 1700). We use the
same values of this parameter for the second pass of the parameter scan in order
to remove the confounding e�ect of secondary parameters.

• The total number of FN events remains almost the same for di�erent values
of spike_thresh. This is further explored in Figure 6.5, where we show the
mean number of events belonging to di�erent subcategories of FP and FN
events for di�erent values of spike_thresh. The number of missed FN events
increase and the number of misclassi�ed FN events decrease with increasing
spike_thresh, keeping the overall number of FN constant. The number of
FP events decreases with spike_thresh mainly due to fewer newly detected
spikes.

3. The parameters noise_thr and auto_mode, both, show interesting trends in their
performance metrics. The overall performance, characterized by the SCP , is better
for higher values of each parameter. A change in the parameter auto_mode from a
value of 0.1 to 0.4 leads to a sharp improvement in performance. A similar trend
is observed for noise_thr between values of 0.7 and 1.0, wherein the number of
FP events sharply decreases along with a modest increase in FN events. For both
these parameters, we probe �ner values in the second pass of the parameter scan.

4. The parameter sensitivity has a seemingly subtle e�ect on the overall perfor-
mance (tendency to �nd less FP events for higher sensitivity values). In order
to limit the parameter space covered in the second pass, we set a value of 6 to be
optimal.

In summary, we have determined the set of parameter values to be explored in the second
pass, given in Table 6.3. The results of the second pass, in which 360 parameter sets are
covered, are shown in Figure 6.3b using strip plots. From these, we infer the following.
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Figure 6.4.: Letter value plots showing distributions of various metrics for

individual values of each parameter of Spyking Circus during the �rst pass of

the parameter scan.
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Figure 6.5.: Mean number of events for all subcategories of FP events (bottom

row) and FN events (top row) for di�erent values of spike_thresh during (a)

the �rst pass and (b) the second pass of the parameter scan. In the �rst pass (a),
the total number of FN events remains almost constant with an increase in spike_thresh
due to an increase in FNmissed and a decrease in FNmisclassified events. At the same
time, the number of FPnew events decreases drastically, with other subcategories of FP
events remaining largely unchanged. In the second pass (b), the number of FN events
increases slightly, although the FNmissed and FNmisclassified events follow a similar trend
as in (a). The FP events follow the same trend as in (a).
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Parameter Name Optimal Liberal Conservative

clip_size 2 2 2

spike_thresh 7 6 8

sim_same_elec 3 3 3

sensitivity 6 6 6

cc_mixtures 0.1 0.1 0.1

noise_thr 0.9 0.6 1.0

auto_mode 0.8 0.8 0.8

Table 6.4.: Selected parameter sets for Spyking Circus. Optimal set represents a balance
between liberal and conservative sorting.

1. The parameter spike_thresh has the largest e�ect on the spike sorting perfor-
mance. For a value of 6, the number of FP events varies considerably (between
approx. 18000 events to approx. 60000 events), owing to the large variations in-
duced by the di�erent values of noise_thr. The number of FP events decreases
considerably with an increase in the spike_thresh parameter value, along with
a modest increase in the number of FN events. The number of retrived GTUs
remains largely constant across the di�erent parameter values. Taking all of this
into consideration, we choose a value of 7 to be optimal for this parameter. Higher
values would yield increasingly conservative results.

2. The parameter noise_thr, when combined with small parameter values of spike
_thresh, yields an unreasonably large number of FP events. For larger values of
this parameter, though, the number of FP events is signi�cantly reduced (how-
ever, this is still much larger than for any parameter set of MountainSort, see
Figure 6.3a). For values above 0.6, there is a sudden rise in the number of FN
events, however this is due only to the parameter sets with an auto_mode value of
0.9 (see right column of Figure 6.3b). noise_thr does not a�ect the number of
retrieved GTUs. We choose 0.9 as the optimal value for this parameter to balance
the FP and the FN events.

3. With increasing values of the parameter auto_mode, the performance steadily im-
proves, until a value of 0.8. For a value of 0.9, the number of FN events increases
suddenly, with other metrics showing no such sudden change. We, thus, choose 0.8
as the optimal value of this parameter.

4. Overall, the algorithm retrieves around the same number of GTUs irrespective
of the parameter values used. Also, the performance score SCP does not change
appreciably with changes in parameter values. These inferences are in line with the
observations made from Figure 6.1b.

Additional �gures which support our observations are shown in the Appendix B. We list
the chosen parameter values for Spyking Circus in Table 6.4.
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Figure 6.6.: Number of units found on each electrode. The number of SUs
(blue) and the number of GTUs (orange) found on each electrode are shown for the two
spike sorting algorithms. Both algorithms were run using optimal parameters. Notably,
MountainSort �nds up to 11 SUs on certain electrodes (electrodes 48, 52, 63). Spyking
Circus, on the other hand, never �nds more than 4 units.

6.1.3. Evaluation of Optimal Parameter Sets

Now that we have determined optimal parameter sets for both spike sorting algorithms
in the sense that we explained above, we look a little deeper into the results obtained
using these parameters.
Spyking Circus retrieved 138 GTUs and MountainSort retrieved 134 GTUs, from a

total of 175 GTUs. Figure 6.6 shows the distribution of units across electrodes. The
algorithms do not always �nd as many units on each electrode as there are in the ground
truth. On certain channels, MountainSort �nds upto 15 SUs � much more than on any
GT channel. This is likely due to the algorithm's tendency to include large and recurring
events which may not arise from spiking activity. This information is represented di�er-
ently in Figure 6.7, where we see that despite having found no units on a comparable
number of electrodes, MountainSort found many more units in total than the ground
truth. Many of the extra units are accounted for by single electrodes containing large
numbers of units (electrodes 48, 50, 52, 63, 66). Spyking Circus �nds units on most
electrodes � sometimes even on those where the ground truth contained none � hinting
at an algorithm that readily accepts even small amplitude events into units. While excess
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Figure 6.7.: Number of channels with a given number of sorted units, for the

ground truth, MountainSort and Spyking Circus. The plot describes how many
electrodes (y-axis) were found to contain a given number of units (x-axis) by a certain
spike sorter (in di�erent colours). Total number of units found � ground truth: 156,
Spyking Circus: 159, MountainSort: 185. Spyking Circus does not �nd any units on 7
electrodes and MountainSort does not �nd any units on 16 electrodes, compared to 18
in the ground truth. Only MountainSort shows a tendency to �nd more than 4 units on
multiple electrodes.

clusters can be manually removed, this hampers an automated work�ow and hints at a
greedy algorithm. Spyking Circus �nds exactly one unit on 40 electrodes, compared to
18 electrodes in the ground truth. This is also seen in Figure 6.6b.
We investigate in more detail the classi�cation performance of the algorithms on each

electrode in Figure 6.8. We �nd that overall, Spyking Circus performs better than Moun-
tainSort when we consider only the classi�cation performance. Spyking Circus �nds units
with a mean SCP < 0.25 on 9 electrodes, whereas MountainSort's units meet that cri-
terion only on 2 electrodes. Further, Spyking Circus �nds units with a mean SCP >
0.5 on 46 electrodes, whereas MountainSort's units meet that criterion only on 34 elec-
trodes (ignoring electrodes where the respective algorithm found no units). The mean
SCP scores across all electrodes where the algorithms found units are relatively high �
MountainSort: 0.48, Spyking Circus: 0.50 � hinting at a less than satisfactory perfor-
mance from both algorithms. Panel 2 of the �gure shows a stark di�erence between the
two algorithms, wherein Spyking Circus accepts a large number of FP events compared
to MountainSort. In panel 4, we see that Spyking Circus has a tendency for fewer FN
events than MountainSort. Speci�cally, it �nds less FN events than MountainSort on
49 electrodes out of 80 where both algorithms found units.
We compare the distributions of SNR values for units found by both algorithms in

Figure 6.9. Units found by Spyking Circus have signi�cantly lower SNR values than
those in the ground truth or by MountainSort. Units found by MountainSort have
comparable SNR values as the ground truth. This suggests that Spyking Circus yields
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Figure 6.8.: Comparison of the classi�cation performance of the two spike

sorting algorithms. Panel 1 (top row) to panel 5 (bottom row) show di�erent aspects of
the classi�cation performance for Spyking Circus (orange in all panels) and MountainSort
(blue in all panels). Panels 1, 2, 3 and 4 show the mean number of TP , FP , TN and FN
events on each electrode, respectively. Panel 5 shows the mean SCP values. The mean
values are calculated by averaging over the values of all matched pairs on each electrode.
In Panel 5, on whichever electrode the algorithm did not �nd a unit (refer to �gure 6.6),
we set the SCP score such that it exceeds the upper limit of the plot.

69



Figure 6.9.: Comparison of the distribution of SNR values. In each plot, the
distribution of the SNR values for units found by the automatic algorithm is shown in
blue (median shown in red) and the distribution of the SNR values of the GTUs matched
by the algorithm is shown in grey (median shown in green). Spyking Circus yields units
with lower SNR values than MountainSort.

units of lower quality than MountainSort.
In order to better understand the nature of the di�erences between the two algorithms,

we created overview �gures on a per-channel basis for each algorithm (see Figure 6.10
for an example). observations are corroborated by the overview Figure 6.11. Also, the
excess units for MountainSort on electrode 48 (Figures 6.12 and 6.13) have a low �ring
rate and can be removed by setting the firing_rate_threshold parameter to a higher
value.
Figure 6.14 compares the results on an electrode containing units with overlapping

events and a large di�erence in amplitude. While both algorithms correctly identify the
large unit, only Spyking Circus is able to retrieve one of the smaller units to a certain
extent, highlighting the fact that Spyking Circus is able to �nd small units in the presence
of larger units, despite overlaps. It should also be noted, however, that the smaller unit
was only partially retrieved.

6.2. Performance on Surrogate Datasets

After having determined optimal parameter sets for each algorithm, we test their appli-
cability on arti�cially generated surrogate datasets.
We generate datasets by the methods described in Chapter 3. The con�guration for

each channel is done individually (as per Table 6.5) and 200 realisations of each surrogate
dataset are created, such that background signals which were extracted from real data
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Figure 6.10.: Electrode overview �gure to visually compare the results of an

automatic algorithm on a single electrode to ground truth. Each �gure has a
tabular structure, with cells, at the intersection of rows and columns, containing plot
elements that display a comparison of one GTU to one SU. In a �gure, all plot elements
coloured red correspond to the ground truth, whereas those coloured green correspond to
the spike sorting algorithm. The �rst cell (top left) shows general information regarding
the �gure, along with the total number of spikes found on that electrode in the ground
truth/sorting algorithm. Each row below the �rst row corresponds to one GTU. Each
column to the right of the �rst column corresponds to one SU. For each SU/GTU, the �rst
cell in the column/row shows the corresponding waveforms (plotted in black), along with
their mean (in green/red) and 2 SDs around the mean (in dashed orange). Additional
information about the unit is displayed in the corners � �ring rate, CV2 (Holt et al.,
1996), LV (Shinomoto et al., 2003), SNR (Hatsopoulos et al., 2007) and the number
of spikes. A label indicating whether a GTU was classi�ed as �noise� or �mua� by the
human expert is also shown where applicable. Each of the remaining cells compares
the corresponding GTU (row) and SU (column), and is divided into four boxes. The
lower left box shows the inter-spike interval histogram (ISIH) of the corresponding GTU,
while the upper left box shows the ISI of the corresponding SU (both binned at 2ms).
The upper left box also displays the p-value for the 2-sample Kolmogorov-Smirnov test
comparing the two ISIHs, with a higher p-value suggesting more similar distributions.
The lower right box contains a Venn diagram representing the overlap of spike times
between the GTU and the SU (overlapping spikes represented in a khaki colour). The
sizes of the circles are proportional to the number of spikes in the units. The upper right
box shows the cross-correlation histogram between the spike trains of the GTU and the
SU (binned at 1ms).
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(a) MountainSort

(b) Spyking Circus

Figure 6.11.: Overview �gures for electrode 12 for automatic spike sorting by

(a) MountainSort and (b) Spyking Circus. See �gure 6.10 for a description of the
�gure. Both algorithms were able to �nd most of events belonging to the single unit on
this electrode. This is evident by the large overlap in the Venn diagrams for both spike
sorters. However, both algorithms found one additional unit containing a large number
of events.
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Figure 6.12: Overview

�gure for Mountain-

Sort's performance on

elecrode 48. The algo-
rithm found an unusually
large number of units on
this electrode. The units
with no overlap with GTUs
have large amplitudes, low
�ring rates, and a large
overlaps with the noise
cluster. This suggests a
high sensitivity of the algo-
rithm to even small clusters
of events. Unit ids 95 and
100 are in good agreement
with units 133 and 134 of
the ground truth, respec-
tively. If the firing_rate_

threshold parameter for
MountainSort is set to a
slightly higher value, all
the excess units on this
electrode for MountainSort
can be removed, leading to
a better performance.
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Figure 6.13.: Overview �gure for Spyking Circus' performance on electrode

48, to be compared with MountainSort's performance in �gure 6.12. Spyking
Circus �nds only 2 units in comparison to the 8 found by MountainSort. However,
Spyking Circus merges the GTUs 133 and 134 into one unit (id 150) and creates a new
unit with largely new events which don't exist in the ground truth.

74



(a) MountainSort (b) Spyking Circus

Figure 6.14.: Overview �gures for electrode 14 for automatic spike sorting

by (a) MountainSort and (b) Spyking Circus. This electrode contains units with a
large di�erence in amplitude and overlapping events. Both algorithms are able to retrieve
the large GTU (id 41). Spyking Circus is able to retrieve a portion of the smaller GTU
(id 42). However, it is not able to �nd all of the spikes. This could be improved by using
a more liberal set of parameters for Spyking Circus.
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elec. #units λ1 λ2 a1 a2 ∆λ φ

1 1 0 -- 8 -- -- --

2 1 0.1 -- 8 -- -- --

3 1 0.2 -- 8 -- -- --

4 1 0.3 -- 8 -- -- --

5 1 0.4 -- 8 -- -- --

6 1 0.5 -- 8 -- -- --

7 1 0.6 -- 8 -- -- --

8 1 0.7 -- 8 -- -- --

9 1 0.8 -- 8 -- -- --

10 1 0.9 -- 8 -- -- --

11 1 1 -- 8 -- -- --

12 1 1 -- 4 -- -- --

13 1 1 -- 5 -- -- --

14 1 1 -- 6 -- -- --

15 1 1 -- 7 -- -- --

16 1 1 -- 8 -- -- --

17 1 1 -- 9 -- -- --

18 1 1 -- 10 -- -- --

19 2 0 0.1 8 8 0.1 --

20 2 0.1 0.2 8 8 0.1 --

21 2 0.2 0.3 8 8 0.1 --

22 2 0.3 0.4 8 8 0.1 --

23 2 0.4 0.5 8 8 0.1 --

24 2 0.5 0.6 8 8 0.1 --

25 2 0.6 0.7 8 8 0.1 --

26 2 0.7 0.8 8 8 0.1 --

27 2 0.8 0.9 8 8 0.1 --

28 2 0.9 1 8 8 0.1 --

65 2 0 0.2 8 8 0.2 --

66 2 0.1 0.3 8 8 0.2 --

67 2 0.2 0.4 8 8 0.2 --

68 2 0.3 0.5 8 8 0.2 --

69 2 0.4 0.6 8 8 0.2 --

70 2 0.5 0.7 8 8 0.2 --

71 2 0.6 0.8 8 8 0.2 --

72 2 0.7 0.9 8 8 0.2 --

73 2 0.8 1 8 8 0.2 --

29 2 0 0.3 8 8 0.3 --

30 2 0.1 0.4 8 8 0.3 --

31 2 0.2 0.5 8 8 0.3 --

32 2 0.3 0.6 8 8 0.3 --

33 2 0.4 0.7 8 8 0.3 --

elec. #units λ1 λ2 a1 a2 ∆λ φ

34 2 0.5 0.8 8 8 0.3 --

35 2 0.6 0.9 8 8 0.3 --

36 2 0.7 1 8 8 0.3 --

37 2 0 0.4 8 8 0.4 --

38 2 0.1 0.5 8 8 0.4 --

39 2 0.2 0.6 8 8 0.4 --

40 2 0.3 0.7 8 8 0.4 --

41 2 0.4 0.8 8 8 0.4 --

42 2 0.5 0.9 8 8 0.4 --

43 2 0.6 1 8 8 0.4 --

44 2 0 0.5 8 8 0.5 --

45 2 0.1 0.6 8 8 0.5 --

46 2 0.2 0.7 8 8 0.5 --

47 2 0.3 0.8 8 8 0.5 --

48 2 0.4 0.9 8 8 0.5 --

49 2 0.5 1 8 8 0.5 --

50 2 0 0.6 8 8 0.6 --

51 2 0.1 0.7 8 8 0.6 --

52 2 0.2 0.8 8 8 0.6 --

53 2 0.3 0.9 8 8 0.6 --

54 2 0.4 1 8 8 0.6 --

55 2 0 0.7 8 8 0.7 --

56 2 0.1 0.8 8 8 0.7 --

57 2 0.2 0.9 8 8 0.7 --

58 2 0.3 1 8 8 0.7 --

59 2 0 0.8 8 8 0.8 --

60 2 0.1 0.9 8 8 0.8 --

61 2 0.2 1 8 8 0.8 --

62 2 0 0.9 8 8 0.9 --

63 2 0.1 1 8 8 0.9 --

64 2 0 1 8 8 1 --

86 2 0 1 8 10 -- 0.1

87 2 0 1 8 10 -- 0.2

88 2 0 1 8 10 -- 0.3

89 2 0 1 8 10 -- 0.4

90 2 0 1 8 10 -- 0.5

91 2 0 1 8 10 -- 0.6

92 2 0 1 8 10 -- 0.7

93 2 0 1 8 10 -- 0.8

94 2 0 1 8 10 -- 0.9

95 2 0 1 8 10 -- 1

Table 6.5.: Con�guration of electrodes in each surrogate dataset. λ1 and λ2 are the λ
values of two units (for electrodes with two units on them). a1 and a2 correspond to the
scaling factors of those two units. Electrodes with overlapping units were not used for
studying the e�ect of ∆λ. φ values denote the overlap fraction for electrodes with two
overlapping units.
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are randomly assigned to the electrodes in each realisation. The �ring rate for all units
is kept constant at 5 Hz and the duration of each dataset is �xed at 300 seconds. This
yields, on average, 1500 events per GTU. Both algorithms are supplied with the same
realisations as input. We then study the e�ect of the di�erent data generation parameters
on spike sorting performance.

6.2.1. E�ect of changing λ

The λ value a�ects the shape of the waveform, but not its amplitude. We vary this
parameter to test if the algorithms show a preference for a certain waveform shape. We
expect the algorithms to be agnostic of the speci�c spike shape. We insert a single
unit on each electrode with a speci�c λ value, keeping other parameters constant (refer
to Table 6.5 � electrodes 1 to 11). �gure 6.15a shows the results of the spike sorting,
averaged across the 200 realisations.
We observe that Spyking Circus remains largely agnostic to the shape of the inserted

spike, since none of the performance metrics vary considerably with a change in λ. How-
ever, MountainSort shows a preference for units with λ values between 0.1 and 0.4, given
that the SCP score drops down to below 0.75 for those values. Moreover, the number of
FN events steadily increases with increasing λ, largely due to the FNmisclassi�ed events.
No such preference was shown by Spyking Circus and it performed signi�cantly better,
with SCP scores averaging around 0.2.

6.2.2. E�ect of changing a

The scaling factor a a�ects the amplitude of the inserted waveforms and is measured in
units of standard deviations around the mean of the �ltered background signal. We vary
this parameter to determine how the amplitude of the waveforms a�ects the algorithms'
performance. We expect the algorithms' performance to increase with increasing values
of a, and we also expect a large number of missed events for low values of a. We insert
a single unit on each electrode with a speci�c scaling factor, keeping other parameters
constant (refer to Table 6.5 � electrodes 12 to 18). Figure 6.15b compares the performance
of the two algorithms, averaged across 200 realisations.
We see that both algorithms' performance improves as we increase the scaling factor.

Spyking Circus performs almost optimally for large values of a (SCP score is close to 0),
although it �nds, on average, twice as many units as we insert. This implies that Spyking
Circus has no trouble �nding large units.
MountainSort, on the other hand, performs poorly even when it comes to �nding a

single, large unit. For small scaling factors, the number of FN events suggests that the
inserted spikes were of a lower amplitude than the detection threshold for the algorithm.
However, the number of FN events does not decrease substantially even for larger scaling
factors. We can see that the algorithm does detect most of the events (owing to almost
0 FNmissed events for larger values of a), but has a strong tendency to misclassify them
(owing to large number of FNmisclassi�ed events). The algorithm also tends to �nd, on
average, 3 times as many SUs as GTUs.
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(a) Varying λ
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(b) Varying a

Figure 6.15.: Spike sorting performance of MountainSort and Spyking Circus

on surrogate data averaged over 200 realisations, while (a) varying λ and (b)

varying a. The error bars denote the standard deviations around the mean. The λ
value should ideally not a�ect the quality of spike sorting since it only determines the
shape of the waveform. However, MountainSort shoes a decrease in performance with
an increase in λ. Spyking Circus shows no clear preference for λ. The scaling factor
a controls the amplitude of the inserted waveforms, and thus, should a�ect the spike
sorting performance. This holds true for both algorithms, with the sorting performance
drastically improving with increasing a.
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6.2.3. E�ect of changing ∆λ

In the previous two cases, we considered cases where a single unit was inserted into the
background signal. Now, we study the algorithms' ability to retrieve two units from an
electrode which were inserted with di�erent values of λ. Each case is characterised by the
di�erence in the λ values of the inserted units � which we refer to as ∆λ. We expect the
algorithms' performance to improve with increasing ∆λ. The two inserted units have the
same amplitude relative to the �ltered background signal (refer to Table 6.5 � electrodes
19 to 73). The performance of the algorithms is shown in Figure 6.16a.
Both algorithms perform poorly for small values of ∆λ, however only Spyking Circus

shows an improvement in performance as ∆λ is increased. MountainSort shows an almost
consistent performance with a high SCP score of 1.1, on average, implying a poor spike
sorting. The main reason for this is the large number of FNmisclassi�ed events, suggesting
that the algorithm is incapable of correctly retrieving the inserted GTUs. In the case of
Spyking Circus, the performance improves until a ∆λ value of 0.3, after which it plateaus
at a SCP score of approx. 0.5. Looking at the units_ratio metrics, it also �nd fewer
units than MountainSort.

6.2.4. E�ect of changing φ

Lastly, we introduce two units on each electrode with a certain known fraction of over-
lapping events � characterized by the overlapping fraction, φ. The λ and a parameters
are kept constant for each unit (refer to Table 6.5 � electrodes 74 to 83). Given that
MountainSort does not have any mechanism by which it can retrieve overlapping events,
we expect it to perform poorly. Spyking Circus, on the other hand, has the ability to
distinguish overlapping units. Hence, we expect Spyking Circus to perform better than
MountainSort for this scenario. The performance of the two algorithms in such a scenario
is compared in Figure 6.16b.
As expected, Spyking Circus has a lower SCP score by almost a factor of 2, despite

having a much larger number of FPnew events. This is largely attributable to the fewer
FNmisclassi�ed for Spyking Circus. The SCP for Spyking Circus worsens only slightly
with increasing overlaps. Interestingly, the units_ratio increases from approx. 1.5 to
approx. 2.0, with increasing values of a, suggesting that the algorithm splits up highly
overlapping units to create new ones. MountainSort performs very poorly, owing to the
large number of FN events, and it's performance is not a�ected by the overlap fraction.

6.3. Overview

The spike sorting algorithms we analysed are able to successfully sort our ground truth
dataset over a range of parameters, showing a large variability in performance across
parameter sets (Figures 6.2 and 6.4). We determine optimal parameter sets (Tables
6.2 and 6.4) for each algorithm by comparing their performance to ground truth and
study the results from these parameter sets in detail. Overall, Spyking Circus exhibits a
preference for FP errors, while MountainSort is more tolerant towards FN errors.
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(a) E�ect of varying ∆λ
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Figure 6.16.: Spike sorting performance of MountainSort and Spyking Circus

on surrogate data averaged over 200 realisations, while (a) varying ∆λ and

(b) varying φ. The error bars denote the standard deviations around the mean. An
increase in the ∆λ value should improve the spike sorting performance, but this is seen
only for Spyking Circus (decreased SCP ). Increase in the overlap fraction φ causes a
steady decrease in the performance for both algorithms, suggesting that neither of the
algorithms is optimized to detect overlapping units.
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With optimal parameters, Spyking Circus shows a large variation across electrodes,
with exceptional performance on certain electrodes and very poor performance on oth-
ers. It is able to detect overlapping units to some extent and is more sensitive to low-
amplitude GTUs. It also, however, has a tendency to produce more noisy units (Fig-
ure 6.9). MountainSort is more consistent in its performance across electrodes, however,
it performs exceptionally well only on 2 electrodes. It typically cannot isolate smaller
amplitude units in the presence of larger ones, but yields less noisy units (Figure 6.9).
On average, however, they exhibit a similar performance.
The performance of both algorithms is markedly di�erent on surrogate datasets. Spyk-

ing Circus outperforms Mountainsort in all respects, showing no sensitivity to waveform
shape and a good retrieval of single units. The performance for both algorithms worsens
in more di�cult scenarios (with multiple units and with overlapping waveforms), how-
ever, Spyking Circus always performs better. Appendix C contains overview �gures of
selected electrodes from one realisation of surrogate data which shed more light on this
matter. This is also discussed further in Chapter 7.
Overall, we do not �nd a clear advantage for either algorithm. Both algorithms have

their drawbacks and advantages, and the choice of the spike sorting algorithm should
depend on the requirements of downstream analyses.
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7. Summary and Discussion

7.1. Summary

In this thesis, we devloped an analysis framework and extensible pipelines to compare
spike sorting algorithms to ground truth, and used them to compare two spike sorting
algorithms � MountainSort and Spyking Circus. Two di�erent kinds of ground truth
were used for the comparison. One was obtained at the end of a careful manual spike
sorting performed by a human expert. The second was synthetically generated surrogate
data, for which we used elements of real data.
Both spike sorting algorithms rely on multiple spike sorting parameters (described

in Chapter 2). We determined optimal parameter sets for each algorithm by carrying
out large parameter scans for which we made use of automated pipelines, which are de-
scribed in Chapter 4. We then evaluated the performance of the algorithms with optimal
parameter sets on surrogate data, and studied the e�ect of di�erent data generation pa-
rameters on the quality of spike sorting. The evaluation was done using metrics, such as
the classi�cation performance score (SCP ), which we developed in Chapter 5.
While both algorithms were able to successfully spike sort real and surrogate datasets,

the results di�ered considerably. Spyking Circus showed a large tolerance for FP events,
whereas MountainSort preferred to have more FN events � revealing a more liberal
approach for the former and a more conservative approach for the latter. MountainSort
created units with higher signal-to-noise ratios than Spyking Circus, but also showed a
tendency to create more units than the ground truth. Spyking Circus was able to retrive
more units and events from the ground truth, but the units it created had large numbers
of FP events. However, Spyking Circus performed signi�cantly better on surrogate data
than MountainSort, yielding near-perfect results with certain data generation parameters.
The choice of spike sorting algorithms for the reader should depend on the kind of

analysis which the sorting results will be used for. Based on our �ndings, for analyses
una�ected by large false positives, Spyking Circus would be ideal. For example, the
unitary event analysis method to detect signi�cant spike synchronization (Grün et al.,
2002a,b) is negatively a�ected by FP errors (Pazienti and Grün, 2006). On the other
hand, analyses requiring units with high signal-to-noise ratios and small number of false
positives, MountainSort would be the right choice.

7.2. Discussion

In this thesis, we have attempted to address a growing challenge in electrophysiological
data analysis � that of automatically and accurately spike sorting large datasets in rea-
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sonable time. We created scalable automated spike sorting pipelines with the intent of
making spike sorting a reproducible procedure. Additionally, we present an approach to
scan the complex space of parameters for automatic spike sorting algorithms in order to
extract sets of parameters which are optimal for a given dataset. However, as with any
analysis method, this approach is not without its limitations. Over the next few pages,
we discuss the limitations of our approach and also discuss details which were beyond
the scope of the present study.

Performance Metrics As a part of this approach, we developed performance metrics,
such as the classi�cation performance score, SCP (equation (5.15)), and the conserva-
tiveness scores, CRP (equation (5.17)) and CFR (equation (5.16)). This was done in an
attempt to yield single scores on the basis of which one can evaluate the quality of spike
sorting. They are calculated for every pair of units matched across the ground truth and
spike sorting result, and summarize the precision (equation (5.1)), recall (equation (5.2))
and fallout (equation (5.3)) for a given match.

Interpretation of the Classi�cation Performance Score The SCP score reduces in-
formation stored in precision-recall and fallout-recall curves. These curves, in turn, rely
on the TP , FP , FN and TN events of the corresponding matched pair. In literature,
when comparing the performance of a spike sorting algorithm to ground truth, the re-
sults are typically evaluated solely on these four values (Pachitariu et al., 2016; Chung
et al., 2017; Chaure et al., 2018; Yger et al., 2018). In our case, however, we decided to
reduce the information stored in these values to a single score to make the comparison
of multiple parameter sets tractable.
Figure 7.1 shows how the SCP score is a�ected by and can be related to the TP ,

FP , FN and TN events. The interpretation of the score varies with the total positive
and negative events in a certain match. For example, with an equal number of negatve
and positive events, a classi�cation with 20% FN and 20% FP errors will be scored at
around 0.2. However, with 10 times more negative events than positive events, the same
classi�cation percentages will yield a score of around 0.4. This aspect of the score could
be remedied by normalizing it to the number of positive and negative events in future
work.
We observe that for each matched pair in our dataset, we obtain many more negative

events (FP and TN) than positive events (TP and FN) Figure 6.8. This is due to the
fact that we consider all events belonging to other units on the electrode as TN events.
Thus, the last row of heatmaps in Figure 7.1 should used to interpret the score values
we present in this thesis.

Limitations of the Classi�cation Performance Score The SCP score is calculated
for each pair of matched units on a given electrode. It rewards TP and TN events
and penalizes FP and FN events (by maximizing precision and recall, and minimizing
fallout). However, there is no mechanism by which it penalizes excess or missing units
on an electrode. As an example, consider �gure 7.2a, where we show an overview �gure
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Figure 7.1: Refer-

ence heatmaps to

interpret values of

SCP . Each row of
heatmaps spans the
possible values of TP ,
TN , FP and FN
events for hypothet-
ical classi�cations
involving di�erent
numbers of positive
events (TP + FN)
and negative events
(FP + TN) in the
GT. Both heatmaps
in each row are
complementary to
each other, since the
number of TP events
complement the
number of FN events
when the number
of positive events is
constant. Similarly,
the number of TP
events complement
the number of FN
events when the
number of negative
events is constant.
The performance of
a classi�cation as
measured by the SCP
score is, thus, subject
to the relative num-
ber of positive and
negative events.
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(a) Spyking Circus

(b) MountainSort

Figure 7.2.: Overview �gure for electrode 49 of surrogate data for (a) Spyking

Circus and (b) MountainSort. The excess unit found on electrode 49 by Spyking
Cirucs is not penalized, and instead lowers the SCP score. On the same electrode, the
lack of excess units in the SR leads to an increase in the SCP score for MountainSort,
even though it objectively performs better on the electrode than Spyking Circus.
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for the comparison of ground truth to results from Spyking Circus on electrode 49. The
GTU id 137 matches almost perfectly with SU id 2. However, since there is only one
GTU on the electrode, the second SU (id 3) is not matched with any GTU and is
thus not accounted for or penalized. In fact, the existence of the this unit adds to the
number of TNclassified events for the GTU-SU matched pair on the electrode and reduces
its fallout score - thus, boosting the overall performance score of the algorithm on the
electrode. In other words, on any electrode where an algorithm: 1. �nd more units than
the ground truth, and 2. �nds completely new events in the excess units the algorithm
is not su�ciently penalized.
On the same electrode, the performance of MountainSort is penalized due to the lack

of excess units. Consider Figure 7.2b, where GTU id 137 matches nearly perfectly with
SU id 104. However, the SCP score for the matched pair is close to 0.5 (compare this
to the value of almost 0.0 for Spyking Circus in Figure 6.8). This occurs because the
SCP score for each matched pair relies on its fallout score (de�ned as F = FP/FP+TN),
which in turn depends on the the number of FP and TN events. In the example above,
the number of TN events is 2 (owing to the 2 events in the GTN that the algorithm
successfully rejected) and the number of FP events is 24 (which are the excess events in
the SU which do not exist in the GTU � FPnew). This yields a relatively large fallout
score of 0.92 which greatly reduces the SCP score.
These errors could be recti�ed by excluding all new events when calculating perfor-

mance metrics (i.e. no TNnew and FPnew subcategories). This would, however, fail to
reward the algorithm for correctly classi�ying detected events into SUs which match well
with GTUs. We instead provide the units_ratio metrics, which can be used to �ag
parameter sets which perform well but create many units.

Variability in the size of GTN units The noise clusters on each electrode have a
large variability in the number of events they contain. Since these units are included in
the calculation of precision (FPnoise) and fallout (FPnoise and TNnoise) for all matched
pairs on an electrode, the performance scores are a�ected by the size of the GTN on
each electrode. While not incorrect, this introduces a variability which depends on the
number of events that were classi�ed as noise in the ground truth.

Evaluation of spike sorting independent of the ground truth Throughout this
thesis, we rely on the existence of a ground truth to evaluate the performance of the
chosen algorithms. Ground truth is, however, not usually available for a typical elec-
trophysiological experiment due to reasons of practicality. There has been recent work
(Schmitzer-Torbert et al., 2005; Joshua et al., 2007; Neymotin et al., 2011; Barnett et al.,
2016) on developing metrics which evaluate the quality of spike sorting in the absence
of ground truth, making use of metrics such as the isolation score and estimating the
number of FP and FN events based on the spike sorted data. Such an approach circum-
vents the drawbacks of using manual spike sorting or surrogate data as ground truth,
discussed below. Therefore, a natural extension to the pipelines presented in Chapter 4
is to include these measures in the evaluation process.
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Determination of matched pairs of units To determine matched pairs of units on
a given electrode, we use the f10-score for each pair of units. This measure ignores
the TN events and all events belonging to the GTN on the electrode. Additionally,
it doubly rewards the number of TP events (owing to the coe�cient of 2 for the TP
events in equation (5.11)). We chose this to remove the e�ect of large numbers of TN
events present on electrodes. There is no standard measure used in literature for such
comparisons and the choices include recall, f1-score and accuracy. Some articles (Chung
et al., 2017) also use confusion matrices to perform unit-to-unit comparisons, however,
these are useful when comparing individual spike sorting results and become impractical
when performing multiple comparisons to determine optimal parameter sets.

Comparison of spike times The spike times of events in our ground truth were
�agged at the times of threshold crossing, whereas the spike times obtained from the two
spike sorting algorithms were times of waveform minima. This di�erence in the spike
times required us to align the spikes from the sorting results. We have described the
approach we take to align these spike times in 5.1.2.1. While this approach works for
non-overlapping units, it could cause a mis-assignment of spike times when the spike
waveforms are overlapping (Figure 7.3). This is likely to happen when the larger of the
overlapping waveforms has its waveform minimum after the minimum of the �rst. In such
a case, the ground truth spike time of the �rst spike may get aligned to the waveform
minimum of the second spike. It is important to note, however, that this would occur only
in cases where overlapping spikes have been detected in the ground truth, as is the case
with our surrogate data. The simplest way to mitigate this error would be to shorten the
window in which we search for the minimum of the spike. The window should, however,
not be set too small, otherwise ground truth spikes which actually correspond to certain
sorted spikes will not be aligned.

Ground truth data We use two kinds of ground truth datasets to compare the results
from automatic spike sorting algorithms. Neither of them, however, can be considered
to be true ground truth, and we discuss the reasons here.

Manual spike sorting as ground truth As was already mentioned in Chapter 1,
the result of manual spike sorting varies signi�cantly depending on who is performing
it (variability from expert to expert) and is not consistent even when the same expert
performs the spike sorting at di�erent times on the same data (Wood et al., 2004b). This
variability stems primarily from human error in judgment, and cannot be eliminated.
However, the scienti�c progress made in the past decades using electrophysiological data
has always relied on such data and resulted in important �ndings for the �eld and for
neuroscience at large. Thus, although not infallible, manual spike sorting is a valid
approximation of the ground truth, and any spike sorting algorithm must be able to
compare to the results obtained from manual spike sorting.
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Figure 7.3.: Illustrative example of the mis-alignment of spike times caused

due to overlapping waveforms. A single waveform of unit A (blue) is shown to overlap
with a single waveform of unit B (orange) to create the composite waveform (black). The
detect threshold for ground truth is shown by the horizontal dashed line at an amplitude
of -250 µV . The intersection of the detect threshold with the composite waveform is
shown indicated by the dotted green vertical lines at tgtA and tgtB for waveforms A
and B, respectively. The dotted grey vertical line indicates the correct position for the
corrected GT spike time for waveform A (at txgtA) and the dotted red vertical line indicates
the time stamp for the actual aligned GT spike times for both waveforms (at t′gtB ). Any
events �agged by a spike sorting algorithm at time txgtA would be marked as a FPnew
event.
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Surrogate data as ground truth The idea behind generating surrogate data is to have
datasets where the absolute ground truth is known. For surrogate electrophysiological
data, this would mean having complete knowledge of the true identities of waveforms
and their corresponding spike times. Such data could be generated by simulating the
electrical signals measured by an electrode, requiring accurate models of the shape of
extracellular action potentials at di�erent locations relative to a single neuron and of
the superposition of such action potentials from large populations of neurons. This is
achieved, under certain limitations, by the likes of Neuron 1, LFPy 2 and VisaPy (Hagen
et al., 2015). However, these simulations are computationally expensive and heavily
parametrised, and provide a level of detail that is not required to evaluate spike sorting
algorithms. Instead, the approach we use here is often referred to as the �hybrid� approach
(Carlson and Carin, 2019), wherein we use background signals from real experimental
data and superimpose waveforms at known times. As Carlson and Carin (2019) aptly
state in their work, �[...] synthetic data do not have to perfectly simulate a biophysical
system to be useful; if a pipeline struggles with controlled synthetic data, similar struggles
should be expected with real data�.
However, our approach has limitations which we must point out. We obtain back-

ground signals for surrogate data by subtracting mean waveforms of units obtained at
the end of spike sorting from the corresponding events in the recorded signals, so as
to remove the primary component of the spike while retaining the residual noise. This
heavily relies on the quality of the spike sorting performed, since subtracting the mean
waveform would only be useful if the units have a relatively high SNR and contain few
overlapping events. Additionally, the detection threshold used for manual spike sorting
should be low enough to detect events which an automatic algorithm would �nd using
a low detection threshold of its own. In other words, the manual spike sorting should
account for as many spikes in the real data as possible, and assign them to as clean
clusters as possible, in order to ensure that the resulting background signal has no events
large enough for an automatic algorithm to detect. Ideally, the background signals we
obtain should contain no neuronal activity (spikes) at all. However, given the limitations
of manual spike sorting, there are a signi�cant number of spikes which remain undetected
or wrongly sorted in the manual process. These spikes are then detected by the auto-
matic spike sorting algorithms and assigned to a certain cluster, and are counted as false
positive events since they were not detected during manual spike sorting. This could be
a potential reason for both spike sorting algorithms to have unit_ratio > 1.
An alternative to manually spike sorting data would be to use an automatic spike

sorting algorithm with a low detection threshold, along with other parameters which
yield a large number of well-de�ned units (which is, in essence, what we desire from
the manual spike sorting). This warrants additional checks, though. For example, if
algorithm A is used to remove real neuronal activity and generate background signals for
a dataset which will be sorted with algorithm B, we must also test the results with the
roles of the algorithsm reversed, so as to account for the e�ect of each algorithm at each

1https://github.com/neuronsimulator/nrn
2https://github.com/LFPy/LFPy
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step.

Performance on surrogate datasets The results shown in 6.2 and Appendix C show a
signi�cant di�erence in the performance of Spyking Circus and MountainSort on surro-
gate datasets. Spyking Circus performs almost optimally when single units are present
on a channel, and shows acceptable results on channels with two units � with and without
overlap. The results of MountainSort, on the other hand, are practically unusable due
to the large unit_ratio and large SCP scores in almost all scenarios (Figure 6.15 and
Figure 6.16). This is particularly surprising since MountainSort performed objectively
better on real data (Figure 6.8). This drop in performance on surrogate datasets seems
to stem from the algorithm's tendency to create more units. We suspect this is a result
of strong over-clustering during the ISO-SPLIT step 2.2.3 that the algorithm is unable
to correct for in subsequent steps. However, this ought to be investigated in future work.

Speed and e�ciency of automatic spike sorting When motivating automatic spike
sorting algorithms in Chapter 1, we described the typical manual spike sorting work-
�ow and gave estimates for the time taken at every step of manual spike sorting. It is
worthwhile stating here that both automatic spike sorting algorithms studied here were
able to spike sort the data in 15-30 minutes, which is 4- to 8-fold decrease in the total
time taken to sort a single dataset. MountainSort, in particular, was almost twice as fast
as Spyking Circus. The algorithms were using on compute clusters with 24 CPUs per
compute node, of which the algorithms used 12 CPUs per sorting task. Both algorithms
were also optimized for memory usage, and the only limitation with the memory was the
total size of the original dataset. The e�cient parallelization of both algorithms enabled
this large increase in speed and e�ciency (no statistics to support these claims).

Packaging and distribution of pipelines In Chapter 4, we developed pipelines for the
automatized and scalable execution of spike sorting algorithms. Each of these pipelines
exists as an individual Snakemake �le, along with its accompanying con�guration and
parameter �les. There are multiple rules common to these pipelines which could be
merged into a single �le. Also, even though snakemake pipelines are easy to share, it
would be more practical to make them available as distributable packages, possibly as
Python packages. This would allow for more systematic versioning of the pipelines and
easier bug reporting and troubleshooting.
The work we have presented in this thesis is by no means complete. However, we

do believe it sets the groundwork for further studies which attempt to evaluate spike
sorting algorithms. Our approach of using parameter scans and performance scores in
combination with automated pipelines makes such analyses fast, e�cient, reproducible
and intuitive, and we hope future work utilizes this and improves on it.
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8. Outlook

Automatic spike sorting will play a crucial role in the future of electrophysiological data
analysis. With increasingly large and dense multielectrode arrays being used in exper-
iments, it becomes imperative that algorithms and data work�ows are developed that
scale with the massive increase in recorded data (Einevoll et al., 2012). The work we
have done in this thesis is a small step in that direction and we discuss here ideas on
ways in which our work could be extended.
A good �rst step would be to use the developed analysis framework to analyze more

datasets, especially from di�erent experiments. The pipelines we present in this thesis
are catered towards datasets obtained from microelectrode arrays with a large electrode
pitch, such as the Utah Array, and there are several such datasets available in literature
(Mizuseki et al., 2014; Senzai and Buzsáki, 2017). In the same spirit, the pipelines in
this thesis could be generalized to be compatible with datasets of any kind. In order to
accomplish this, one would have to modify only the scripts which (i) consolidate spike
sorting results to a common data format for comparison, and (ii) perform the comparison
between spike sorting results and ground truth. All other components of our pipelines
are already generalizable to any dataset. This is facilitated by the fact the pipelines
make use of the Neo data framework (Garcia et al., 2014) which provides a common data
model and support for a large number of �le formats for electrophysiological data.
A logical extension to our work would be to include more automatic spike sorting

algorithms into the analysis. The literature is replete with di�erent algorithms which
tackle spike sorting in novel ways. Most notably, the algorithms introduced by Rossant
et al. (2016) and Pachitariu et al. (2016) seem promising candidates. Each of these
spike sorting algorithms, however, is designed with speci�c datasets in mind on which it
performs optimally. It should not be expected that any one algorithm is superior to the
rest in all scenarios.
To that end, we would like to highlight a recent work by Buccino et al. (2019), wherein

they introduce a toolkit called SpikeInterface. It brings together many di�erent spike
sorting algorithms (including the two covered in this thesis) under one common interface,
allowing the user to choose which algorithm to use for analysing a dataset. We believe this
is a step in the right direction, since it removes the overhead that comes with installing
and running di�erent pieces of software, provides a uni�ed interface for any spike sorting
algorithm and greatly aids in the goal towards a reproducible spike sorting work�ow.
SpikeInterface accepts a variety of data formats as input, converts them into the data
format required by the spike sorting algorithm of the user's choice, and returns results in
a common data format. This is also the principle approach of the spike sorting pipelines
developed in this thesis, and we will investigate if these developments can be coupled to
the statistical analysis performed by our pipelines.
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We created our pipelines with the intent of integrating them into automated data
anlysis work�ows being developed at the Institute of Neuroscience and Medicine � 6
(INM-6), at the Forschungszentrum Jülich. These existing work�ows are designed us-
ing snakemake, allowing for a smoother integration with our pipelines. These work�ows
automatize various pre-processing steps for datasets recorded during long-term experi-
ments and reduce the latency between data acquisition and analysis, allowing researchers
to focus more on the analysis rather than the pre-processing. Spike sorting is a major
pre-processing stage for any spike-time based analysis, requiring signi�cant time and
e�ort. Our pipelines will be an important addition to this work�ow. Their design as
Snakemake rules makes them easy to integrate in the process.
In Chapter 7, we discuss how the metrics used in this thesis rely on a ground truth and

how it would be useful to introduce metrics which evaluate the sorters' performance in the
absence of ground truth. Once such metrics are introduced into our analysis framework,
they could be used in conjunction with our parameter scan pipeline to determine an
independent set of optimal parameters for each recorded dataset. This should yield
better spike sorting results than ones obtained by using a common set of parameters.
Spike sorting yields knowledge of the precise spike timing of distinct neurons in the

vicinity of implanted electrodes. This precise spike timing can be used to detect corre-
lations between behaviour and spiking activity (Vaadia et al., 1995; Riehle et al., 1997;
Hatsopoulos et al., 1998), between the LFP and spiking activity (Denker et al., 2011), and
even between the spiking activity of individual neurons in the form of spatio-temporal
patterns (Torre et al., 2013, 2016). These correlations rely heavily on the quality of spike
sorting (Pazienti and Grün, 2006). The usability of automatic spike sorting algorithms
can be evaluated by looking for such correlations in automatically spike sorted data and
comparing the results with those obtained from manually spike sorted data.
Automatic spike sorting pipelines could also help speed up other kinds of analyses. The

shape of the waveforms of single units identi�ed during spike sorting is stereotypical and
results from a combination of the electrical properties of the extracellular medium and
the distance of the neuron from the electrode (Gold et al., 2006). For datasets recorded
using chronically implanted microelectrode arrays as a part of long-term experiements,
there is evidence to suggest that single units can be tracked from one recording session
to the next on the basis of their waveform shape and �ring activity (Dickey et al., 2009;
Fraser and Schwartz, 2012; Tolias et al., 2007), in e�ect enabling the tracking of putative
neurons over the course of multiple days/weeks.
This type of a study would require multiple recorded datasets to be spike sorted. If

done manually, this would be restrictively time consuming and labour intensive. However,
with the help of automatic spike sorting pipelines, this procedure could be sped up
signi�cantly and even parallelized. A related challenge in single unit tracking has to do
with the fact that the shape of a single unit's waveform depends on the spike sorting,
and the variability inherent in manual spike sorting (Wood et al., 2004b) brings the
validity of such analyses into question. If automatic spike sorting algorithms are used
instead, the same spike sorting parameters could be used on all datasets being studied,
thereby removing any external sources of variability. Moreover, parameter scans could
be performed on multiple datasets using our pipelines to determine how spike sorting
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parameters a�ect the results of single unit tracking.
In summary, the pipelines and metrics we have introduced in this thesis have a wide

range of applications and we hope they are used and improved by anyone interested in
automatizing their spike sorting work�ows.
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A. Interpreting Letter Plots

In Chapter 5, to present and evaluate the results of the �rst pass of our parameter scans,
we made use of letter plots (Hofmann et al., 2011). They are graphical representation
of the distribution of data samples and were introduced as an alternative to box plots
and violin plots. They rely on the concept of letter values (described below). They
give a more accurate representation of the tails of the underlying distribution than box
plots, without making any density estimations on the samples (thus representing the true
samples, unlike in violin plots).

Letter Values Given n samples x(1), x(2), . . . , x(n), the k
th order statistic is de�ned as

the kth smallest sample. These order statistics can then be written asX(1), X(2), . . . , X(n),

where X(k) = x(j) is the kth smallest sample of the distribution, x(j), which is at an
arbitrary position j in the original distribution of samples. Of these, the median of the
distribution of samples appears at the dth1 -order, or at a depth of d1, where d1 = (1+n)

2 .
Letter values are order statistics which appear at de�ned depths in the distribution of
samples, with the �rst letter value always being the median. Successive letter values
appear at di = (1+di−1)

2 . For fractional values of di, the mean of the two adjacent order
statistics, Xddie and Xbdic, is used. The letter values demarcate the proportion of the
underlying samples contained in the tail of the distribution. For example, the second
letter values demarcate 25% of the samples in the tail (quartiles), the third letter values
demarcate 12.5% of the samples in the tail (octiles), and so on.
Figure A.1 shows a comparison between box plots, violin plots, strip plots and letter

plots on a sample dataset describing the weight (in carats) of 53,940 diamonds for di�erent
qualities of the diamond cut. In the panel titled �Letter Plots�, for each type of cut, letter
values are shown as boxes of decreasing width around the median (shown by a black
horizontal lines). The width of the boxes has no relevance and is used only to emphasize
the di�erence between the letter values. The boxes are shaded (from a darker shade for
smaller letter values to a lighter shade for larger ones) to represent the relative density
of data points contained within those boxes. Outliers from the distribution are marked
separately, just as in box plots.
The �rst three panels contain distributions over the same data, but using di�erent

graphical representations. Box plots reveal the same information at the centre of the
distributions as the letter plots, but do not describe the tails of the distribution as well
and also generate more outliers. Violin plots show a more detailed variation in the
density, however, they do not represent actual data samples and the smoothness of the
curves can be misleading. The white dots with black bars inside the violin plots are the
same as the box plots (without the outliers marked, and the white dot representing the
median). Strip plots are an almost direct representation of the underlying data and are
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Figure A.1.: Comparison of box plots, violin plots, strip plots and letter value

plots on an example dataset. The four panels of the �gure show the distribution of the
weight (in carats) of 53,940 diamonds for di�erent qualities of the diamond cut ('ideal',
'premium', 'good', 'very good' and 'fair'). Each panel shows the data using a di�erent
graphical representation. From left to right, these are: box plots, violin plots, strip plots
and letter values plots.

only useful when there are fewer data samples. We use strip plots for the second pass of
our parameter scans.
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B. Distributions of Conservativeness
Scores

The CFR and CRP scores provide an intuition regarding the conservativeness of the clas-
si�cation. Positive values indicate a conservative spike sorting result, whereas negative
values indicate a liberal spike sorting result. The results we showed and discussed in
Chapter 6 were su�cient to deduce the conservativeness of the matches and we omitted
the CFR and CRP distributions from that chapter. Instead, we show the distributions
for the second pass of the parameter scan in Figure B.1 and Figure B.2.
Each �gure contains a sub�gure for each parameter varied during the second pass of

the parameter scan. In each sub�gure, the top rows of plots show distributions of CRP for
di�erent values of that parameter, whereas the bottom rows of plots show distributions
of CFR. For a given value of a spike sorting parameter, the distribution of conserva-
tiveness scores is calculated over all matched pairs which were found with that value
of the parameter. This indicates how the parameter a�ects the overall distribution of
conservativeness. A shift of the distribution to the left or the right with a change in pa-
rameter values would indicate a shift towards a more liberal or more conservative sorting,
respectively. In each plot, the number of matched pairs found with the corresponding
parameter value is shown, as a rough indication of the tendency of the algorithm to re-
trieve GTUs when that parameter value is used. The mean and the standard deviation
are displayed and plotted as dashed vertical lines of red and green colour, respectively.
These plots can be viewed in conjunction with Figure 6.3.
For MountainSort, an increase in the values of the detect_threshold parameter shifts

the CRP distribution to the right by a signi�cant amount. Although a similar shift oc-
curs for the mean values of CFR distributions, the shape of the distributions do not show
a discernible structure. The number of matched pairs peaks for detect_threshold =

6, however we choose detect_threshold = 5 as optimal after considering other perfor-
mance metrics. Increase in the values of isolation_threshold also cause a slight shift to
the right for the CRP distributions, although not signi�cant. For higher values, though,
the number of matched pairs decreases drastically, which is also visible by the size of the
distribution for isolation_threshold = 0.995. The CFR distributions do not show a
consistent behaviour. A value of 0.985 a�ords a good balance between the conservative-
ness and the number of matched units. Lastly, for noise_overlap_threshold, we do not
observe signi�cant shifts in either distributions, although the number of matched pairs
increases as you increase the parameter value. We choose noise_overlap_threshold =

0.2 as optimal after considering other performance metrics.
In the case of Spyking Circus, we use the same procedure of interpreting Figure B.2

to arrive at the list of optimal parameter values listed in Table 6.4.
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Figure B.1.: CRP and CFR distributions for MountainSort parameters (a)

detect_threshold (b) isolation_threshold (c) noise_overlap_threshold.
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Figure B.2.: CRP and CFR distributions for Spyking Circus parameters (a)

spike_thresh (b) noise_thr (c) auto_mode.
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C. Overview Figures from Comparisons
to Surrogate Data

In 6.2, we evaluated the performance of the two automatic spike sorting algorithms on
surrogate data. We found a stark di�erence between their performances, with Spyk-
ing Circus performing better in every case scenario, on every performance metric. We
corroborate those �ndings with examples of overview �gures of chosen electrodes from
one iteration of the analysis. Refer to �gure captions for further explanations, and to
Figure 6.10 to interpret the overview �gures.
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(a) MountainSort

(b) Spyking Circus

Figure C.1.: Overview �gure for electrode 11 of surrogate data for (a) Moun-

tainSort and (b) Spyking Circus. This relevant data generation parameters are:
λ = 1.0 and a = 8. Mountainsort splits up the single GTU into three SUs, with one of
the SUs containing many contaminating events (id 34). Due to the few FP events, SU
id 35 is matched to the GTU, however, the three SUs combined were able to retrieve
almost all GT events (540+476+454=1070). Spyking Circus was able to retrieve almost
the entire GTU perfectly in SU id 252. The second SU (id 253) seems to contain the
same events as in id 34 of MountainSort, suggesting both algorithms found the same
contaminants in addition to the true surrogate events.
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(a) MountainSort

(b) Spyking Circus

Figure C.2.: Overview �gures for electrode 17 of surrogate data for (a) Moun-

tainSort and (b) Spyking Circus. The relevant data generation parameters are: a = 9
and λ = 1.0. MountainSort splits the single GTU into two SUs, such that the sum of the
overlaps from each case accounts for almost all spikes of the GTU (432+1037=1469). On
the other hand, Spyking Circus isolates the entire unit almost perfectly. The surrogate
GTU has a fairly large amplitude, being 9 SDs larger than the mean of the �ltered signal.
The waveforms amplitudes might seem di�erent for the SU and the GTU in the case of
Spyking Circus, but this is an artefact of autoscaling by the plotting package.
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(a) MountainSort

(b) Spyking Circus

Figure C.3.: Overview �gures for electrode 26 of surrogate data for (a)

MountainSort and (b) Spyking Circus. The relevant con�guration parameters are:
λ1 = 0.7, λ2 = 0.8, ∆λ = 0.1, a1 = a2 = 8. The ∆λ for this electrode is too small for
either algorithms to be able to e�ectively segregate the GTUs. However, both algorithms
tackle this di�erently. MountainSort splits the elements of the two GTUs over four SUs in
a seemingly arbitrary manner, mixing them with other contaminant spikes. This severely
a�ects the SCP score. Spyking Circus behaves more predictably and merges both GTUs
into one large SU (id 24) and creates a separate cluster (id 23) with contaminant spikes.
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(a) MountainSort

(b) Spyking Circus

Figure C.4.: Overview �gures for electrode 53 of surrogate data for (a) Moun-

tainSort and (b) Spyking Circus. The relevant data generation parameters are:
λ1 = 0.3, λ2 = 0.9, ∆λ = 0.6 and a1 = a2 = 8. In contrast to �gure C.3, this electrode
has a larger ∆λ, implying an �easier� task for sorting algorithms. MounatinSort, how-
ever, does not seem to bene�t from the larger ∆λ and splits the two GTUs across �ve
SUs, yielding very high SCP score. This is does not seem to be an e�ect of contaminant
spikes, since the algorithm �nds fewer events in all (3029) as compared to the GT (3061).
Spyking Circus achieves near-perfect performance on the same electrode, creating SU ids
105 and 107 corresponding to GTU ids 86 and 87. It also �nds a contaminant unit (id
106) with minimal overlaps with GTUs.

103



(a) MountainSort

(b) Spyking Circus

Figure C.5.: Overview �gures for electrode 92 of surrogate data for (a) Moun-

tainSort and (b) Spyking Circus. The relevant data generation parameters are:
λ1 = 0.0, λ2 = 1.0, a1 = 8, a2 = 10 and φ = 0.7. Note that the GTUs have 7%
overlapping spikes. MountainSort split the two GTUs across four SUs and found a few
contaminant spikes in the process (owing to the di�erence in the total number of spikes).
This bad performance might not be a result of overlapping spikes, since the algorithm
also performed poorly on electrodes without any overlaps (�gure C.3a). Spyking Circus
was able to segregate the two GTUs well, with SU ids 190 and 192 matching GTU ids
165 and 164, respectively. It found a unit of mostly contaminant spikes (id 191) and an
additional cluster (unit 4) with 2 events which could potentially belong to either of the
two GTUs.
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